소스 검색

[Gen] Add OPT to generation test

Tri Dao 2 년 전
부모
커밋
f68d41ec77
4개의 변경된 파일164개의 추가작업 그리고 11개의 파일을 삭제
  1. 8 4
      flash_attn/utils/generation.py
  2. 25 3
      flash_attn/utils/pretrained.py
  3. 130 4
      tests/models/test_gpt_generation.py
  4. 1 0
      tests/models/test_opt.py

+ 8 - 4
flash_attn/utils/generation.py

@@ -71,7 +71,8 @@ def sample(logits, top_k=1, top_p=0.0, temperature=1.0):
 
 
 def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
-           vocab_size=None, tensor_parallel=1, fused_ft_kernel=False, cg=False, timing=False):
+           eos_token_id=None, vocab_size=None, tensor_parallel=1, fused_ft_kernel=False,
+           cg=False, timing=False):
     """Decoding, either greedy or with top-k or top-p sampling.
     If top-k = 0, don't limit the number of candidates (pure sampling).
     Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
@@ -104,14 +105,15 @@ def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
     scores = []
     with torch.inference_mode():
         logits = model(input_ids, inference_params=inference_params).logits[:, -1]
+        if timing:
+            torch.cuda.synchronize()
+            start = time.time()
         if vocab_size is not None:
             logits = logits[..., :vocab_size]
         scores.append(logits)
         next_token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature)
         sequences = [next_token]
         inference_params.sequence_len_offset = seqlen_og
-        if timing:
-            start = time.time()
         while True:
             position_ids = torch.full((batch_size, 1), inference_params.sequence_len_offset,
                                     dtype=torch.long, device=input_ids.device)
@@ -127,11 +129,13 @@ def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
             next_token = sample(logits, top_k=top_k, temperature=temperature)
             sequences.append(next_token)
             inference_params.sequence_len_offset += 1
+            if eos_token_id is not None and (next_token == eos_token_id).all():
+                break
             if inference_params.sequence_len_offset >= max_length - 1:
                 break
         if timing:
             torch.cuda.synchronize()
-            print(f'Decoding time: {time.time() - start}')
+            print(f'Decoding time: {(time.time() - start) * 1000:.0f}ms')
     output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
     return output_cls(
         sequences=torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1),

+ 25 - 3
flash_attn/utils/pretrained.py

@@ -1,11 +1,33 @@
 import torch
 
-from transformers.utils import WEIGHTS_NAME
-from transformers.utils.hub import cached_file
+from transformers.utils import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
+from transformers.utils import is_remote_url
+from transformers.modeling_utils import load_state_dict
+from transformers.utils.hub import cached_file, get_checkpoint_shard_files
 
 
 def state_dict_from_pretrained(model_name, device=None, dtype=None):
-    state_dict = torch.load(cached_file(model_name, WEIGHTS_NAME), map_location=device)
+    is_sharded = False
+    resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
+                                        _raise_exceptions_for_missing_entries=False)
+    if resolved_archive_file is None:
+        resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME,
+                                            _raise_exceptions_for_missing_entries=False)
+        if resolved_archive_file is not None:
+            is_sharded = True
+    if resolved_archive_file is None:
+        raise EnvironmentError(f"Model name {model_name} was not found.")
+    if is_sharded:
+        # resolved_archive_file becomes a list of files that point to the different
+        # checkpoint shards in this case.
+        resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
+            model_name, resolved_archive_file
+        )
+        state_dict = {}
+        for sharded_file in resolved_archive_file:
+            state_dict.update(torch.load(sharded_file, map_location=device))
+    else:
+        state_dict = torch.load(cached_file(model_name, WEIGHTS_NAME), map_location=device)
     if dtype is not None:
         state_dict = {k: v.to(dtype) for k, v in state_dict.items()}
     return state_dict

+ 130 - 4
tests/models/test_gpt_generation.py

@@ -1,18 +1,22 @@
 import os
 import re
+import time
 
 import torch
 import pytest
 
 from einops import rearrange
 
-from transformers import GPT2Config, GPT2Tokenizer
+from transformers import GPT2Config, GPT2Tokenizer, OPTConfig, AutoTokenizer
 from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF
+from transformers.models.opt.modeling_opt import OPTForCausalLM
 
 from flash_attn.models.gpt import GPTLMHeadModel
 from flash_attn.models.gpt import remap_state_dict_gpt2
+from flash_attn.models.opt import remap_state_dict_opt, opt_config_to_gpt2_config
 from flash_attn.utils.pretrained import state_dict_from_pretrained
 from flash_attn.utils.distributed import all_gather_raw
+from flash_attn.utils.generation import update_graph_cache
 
 
 @pytest.mark.parametrize('fused_ft_kernel', [False, True])
@@ -22,7 +26,7 @@ from flash_attn.utils.distributed import all_gather_raw
 @pytest.mark.parametrize('rotary', [False, True])
 # @pytest.mark.parametrize('rotary', [False])
 @pytest.mark.parametrize('model_name', ["gpt2"])
-def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
+def test_greedy_decode_gpt2(model_name, rotary, optimized, fused_ft_kernel):
     """Check that our implementation of GPT2 generation matches the HF implementation:
     the scores in fp16 should be around the same as the HF scores in fp16, when compared to
     the HF scores in fp32.
@@ -49,13 +53,14 @@ def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
 
     if not rotary:
         model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device)
-        model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype)
+        model_hf = GPT2LMHeadModelHF.from_pretrained(model_name,
+                                                     torch_dtype=dtype).to(device=device)
         model_ref.eval()
         model_hf.eval()
 
     torch.manual_seed(0)
     tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
-    input_ids = tokenizer("Hello, my dog is cute and ",
+    input_ids = tokenizer("Hello, my dog is cute and",
                           return_tensors="pt").input_ids.to(device=device)
     max_length = 30
     # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
@@ -106,3 +111,124 @@ def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
         assert torch.all(out.sequences == out_hf.sequences)
 
         assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()
+
+
+@pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b", "facebook/opt-6.7b"])
+# @pytest.mark.parametrize('model_name', ["facebook/opt-6.7b"])
+def test_greedy_decode_opt(model_name):
+    """Check that our implementation of OPT generation matches the HF implementation:
+    the scores in fp16 should be around the same as the HF scores in fp16, when compared to
+    the HF scores in fp32.
+    """
+    print(f'\nMODEL: {model_name}')
+    verbose = False
+    dtype = torch.float16
+    device = 'cuda'
+    rtol, atol = 3e-3, 3e-1
+    fused_ft_kernel = True
+    config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
+    # Only prenorm supports residual_in_fp32
+    config.residual_in_fp32 = getattr(config, 'prenorm', True)
+    config.use_flash_attn = True
+    config.fused_bias_fc = True
+    config.fused_mlp = True
+    config.fused_dropout_add_ln = True
+
+    model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
+    model.eval()
+
+    torch.manual_seed(0)
+    # OPT tokenizer requires use_fast=False
+    # https://huggingface.co/docs/transformers/model_doc/opt
+    tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
+    eos_token_id = tokenizer.eos_token_id
+
+    input_ids = tokenizer("Hello, my dog is cute and",
+                          return_tensors="pt").input_ids.to(device=device)
+    max_length = 30
+    # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
+    # max_length = input_ids.shape[1] + 40
+
+    # Slow generation for reference
+    sequences = []
+    scores = []
+    cur_input_ids = input_ids
+    with torch.inference_mode():
+        scores.append(model(cur_input_ids).logits[:, -1])
+        sequences.append(scores[-1].argmax(dim=-1))
+        for _ in range(input_ids.shape[1] + 1, max_length):
+            cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1)
+            scores.append(model(cur_input_ids).logits[:, -1])
+            sequences.append(scores[-1].argmax(dim=-1))
+            if eos_token_id is not None and (sequences[-1] == eos_token_id).all():
+                break
+    sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1)
+    scores = tuple(scores)
+
+    print('Without CUDA graph')
+    torch.cuda.synchronize()
+    start = time.time()
+    out = model.generate(input_ids=input_ids, max_length=max_length,
+                         eos_token_id=eos_token_id, fused_ft_kernel=fused_ft_kernel,
+                         return_dict_in_generate=True, output_scores=True, timing=True)
+    torch.cuda.synchronize()
+    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
+    if verbose:
+        print(out.sequences)
+    print(tokenizer.batch_decode(out.sequences.tolist()))
+    if fused_ft_kernel:
+        # Capture graph outside the timing loop
+        batch_size, seqlen_og = input_ids.shape
+        model._decoding_cache = update_graph_cache(
+            model, None, batch_size, seqlen_og, max_length
+        )
+        print('With CUDA graph')
+        torch.cuda.synchronize()
+        start = time.time()
+        out_cg = model.generate(input_ids=input_ids, max_length=max_length,
+                                fused_ft_kernel=fused_ft_kernel, cg=True,
+                                return_dict_in_generate=True, output_scores=True, timing=True)
+        torch.cuda.synchronize()
+        print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
+        if verbose:
+            print(out_cg.sequences)
+        print(tokenizer.batch_decode(out.sequences.tolist()))
+
+    del model
+
+    model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)
+    model_hf.eval()
+    print("HF fp16")
+    torch.cuda.synchronize()
+    start = time.time()
+    out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
+                               return_dict_in_generate=True, output_scores=True)
+    torch.cuda.synchronize()
+    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
+    del model_hf
+
+    model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
+    model_ref.eval()
+    print("HF fp32")
+    torch.cuda.synchronize()
+    start = time.time()
+    out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length,
+                                return_dict_in_generate=True, output_scores=True)
+    torch.cuda.synchronize()
+    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
+    del model_ref
+    print(tokenizer.batch_decode(out_ref.sequences.tolist()))
+
+    if verbose:
+        print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}')
+        print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}')
+        print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}')
+        print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}')
+
+    assert torch.all(out.sequences == sequences)
+    assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1),
+                          rtol=rtol, atol=atol)
+    assert torch.all(out.sequences == out_ref.sequences)
+    assert torch.all(out.sequences == out_hf.sequences)
+
+    assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()

+ 1 - 0
tests/models/test_opt.py

@@ -35,6 +35,7 @@ def test_opt_optimized(model_name):
     config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
     config.use_flash_attn = True
     config.fused_bias_fc = True
+    config.fused_mlp = True
     config.fused_dropout_add_ln = True
     # Only prenorm supports residual_in_fp32
     config.residual_in_fp32 = getattr(config, 'prenorm', True)