123456789101112131415161718192021222324252627282930313233 |
- import torch
- from transformers.utils import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
- from transformers.utils import is_remote_url
- from transformers.modeling_utils import load_state_dict
- from transformers.utils.hub import cached_file, get_checkpoint_shard_files
- def state_dict_from_pretrained(model_name, device=None, dtype=None):
- is_sharded = False
- resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
- _raise_exceptions_for_missing_entries=False)
- if resolved_archive_file is None:
- resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME,
- _raise_exceptions_for_missing_entries=False)
- if resolved_archive_file is not None:
- is_sharded = True
- if resolved_archive_file is None:
- raise EnvironmentError(f"Model name {model_name} was not found.")
- if is_sharded:
- # resolved_archive_file becomes a list of files that point to the different
- # checkpoint shards in this case.
- resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
- model_name, resolved_archive_file
- )
- state_dict = {}
- for sharded_file in resolved_archive_file:
- state_dict.update(torch.load(sharded_file, map_location=device))
- else:
- state_dict = torch.load(cached_file(model_name, WEIGHTS_NAME), map_location=device)
- if dtype is not None:
- state_dict = {k: v.to(dtype) for k, v in state_dict.items()}
- return state_dict
|