123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- import re
- import torch
- import pytest
- from transformers import OPTConfig
- from transformers.models.opt.modeling_opt import OPTForCausalLM
- from flash_attn.models.gpt import GPTLMHeadModel
- from flash_attn.models.opt import remap_state_dict_opt, opt_config_to_gpt2_config
- from flash_attn.utils.pretrained import state_dict_from_pretrained
- @pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"])
- # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
- def test_opt_state_dict(model_name):
- config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
- pretrained_state_dict = remap_state_dict_opt(state_dict_from_pretrained(model_name), config)
- model = GPTLMHeadModel(config)
- state_dict = model.state_dict()
- assert state_dict.keys() == pretrained_state_dict.keys()
- for k in state_dict.keys():
- assert state_dict[k].shape == pretrained_state_dict[k].shape
- @pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"])
- # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
- def test_opt_optimized(model_name):
- """Check that our implementation of OPT (without all optimizations enabled) matches the
- HF implementation: the output of our forward pass in fp16 should be around the same as the HF
- forward pass in fp16, when compared to the HF forward pass in fp32.
- """
- dtype = torch.float16
- device = 'cuda'
- config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
- config.use_flash_attn = True
- config.fused_bias_fc = True
- config.fused_mlp = True
- config.fused_dropout_add_ln = True
- # Only prenorm supports residual_in_fp32
- config.residual_in_fp32 = getattr(config, 'prenorm', True)
- config.pad_vocab_size_multiple = 8
- model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
- model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
- model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)
- model.eval()
- model_ref.eval()
- model_hf.eval()
- torch.manual_seed(0)
- batch_size = 2
- max_seqlen = 256
- seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda')
- input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
- device='cuda')
- if model_name != 'facebook/opt-350m': # The OPT-350m projects the embeddings to dimension 512
- out = model.transformer(input_ids)
- out_hf = model_hf.model(input_ids).last_hidden_state
- out_ref = model_ref.model(input_ids).last_hidden_state
- print(f'Output max diff: {(out - out_ref).abs().max().item()}')
- print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
- print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
- print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
- assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
- logits = model(input_ids).logits
- logits_hf = model_hf(input_ids).logits
- logits_ref = model_ref(input_ids).logits
- print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
- print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
- print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
- print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
- assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
|