123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # Copyright (c) 2023, Tri Dao.
- import math
- import re
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from einops import rearrange
- from transformers import FalconConfig, GPT2Config
- def remap_state_dict_hf_falcon(state_dict, config):
- def key_mapping_layers(key):
- return re.sub(r"^transformer.h.", "transformer.layers.", key)
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # Word embedding
- def key_mapping_emb(key):
- return re.sub(
- r"^transformer.word_embeddings.", "transformer.embeddings.word_embeddings.", key
- )
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- if getattr(config, "tie_word_embeddings"):
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- else:
- output_embeddings = state_dict.pop("lm_head.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- output_embeddings_bias = state_dict.pop("lm_head.bias")
- state_dict["lm_head.bias"] = F.pad(
- output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
- )
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(
- r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key
- )
- key = re.sub(
- r"^transformer.layers.(\d+).post_attention_layernorm.",
- r"transformer.layers.\1.norm2.",
- key,
- )
- key = re.sub(r"^transformer.layers.(\d+).ln_attn.", r"transformer.layers.\1.norm1.", key)
- key = re.sub(r"^transformer.layers.(\d+).ln_mlp.", r"transformer.layers.\1.norm2.", key)
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- def key_mapping_mlp(key):
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key
- )
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- def key_mapping_attn(key):
- key = re.sub(
- r"^transformer.layers.(\d+).self_attention.query_key_value.",
- r"transformer.layers.\1.mixer.Wqkv.",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).self_attention.dense.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- n_head = config.n_head
- n_head_kv = getattr(config, "n_head_kv", 1)
- headdim = config.hidden_size // n_head
- for l in range(config.n_layer):
- # The weights are stored in a different layout compared to our implementation
- Wqkv = rearrange(
- state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight"),
- "(group ratio headdim) ... -> group ratio headdim ...",
- ratio=n_head // n_head_kv + 2,
- headdim=headdim,
- )
- Wq = rearrange(Wqkv[:, :-2], "group ratio headdim ... -> (group ratio headdim) ...")
- Wk = rearrange(Wqkv[:, [-2]], "group ratio headdim ... -> (group ratio headdim) ...")
- Wv = rearrange(Wqkv[:, [-1]], "group ratio headdim ... -> (group ratio headdim) ...")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
- return state_dict
- def falcon_config_to_gpt2_config(falcon_config: FalconConfig) -> GPT2Config:
- # The 40b config uses "n_head_kv" instead of "num_kv_heads"
- n_head_kv = getattr(
- falcon_config,
- "n_head_kv",
- 1 if getattr(falcon_config, "multi_query", False) else falcon_config.n_head,
- )
- # HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config.
- # So we have to infer it from the number of heads in the key/value block
- parallel_block_tied_norm = n_head_kv == 1
- return GPT2Config(
- vocab_size=falcon_config.vocab_size,
- n_positions=0, # No absolute position embedding
- n_embd=falcon_config.hidden_size,
- n_layer=falcon_config.n_layer,
- n_head=falcon_config.n_head,
- n_inner=falcon_config.hidden_size * 4,
- activation_function="gelu",
- resid_pdrop=falcon_config.hidden_dropout,
- embd_pdrop=0.0, # There doesn't seem to be any embedding dropout
- attn_pdrop=falcon_config.attention_dropout,
- layer_norm_epsilon=falcon_config.layer_norm_epsilon,
- initializer_range=falcon_config.initializer_range,
- bos_token_id=falcon_config.bos_token_id,
- eos_token_id=falcon_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- parallel_block=falcon_config.parallel_attn,
- n_head_kv=n_head_kv,
- parallel_block_tied_norm=parallel_block_tied_norm,
- rotary_emb_fraction=1.0,
- rotary_emb_interleaved=False,
- tie_word_embeddings=True,
- qkv_proj_bias=falcon_config.bias,
- out_proj_bias=falcon_config.bias,
- mlp_fc1_bias=falcon_config.bias,
- mlp_fc2_bias=falcon_config.bias,
- lm_head_bias=False,
- )
|