# Copyright (c) 2023, Tri Dao. import math import re from collections import OrderedDict import torch import torch.nn.functional as F from einops import rearrange from transformers import FalconConfig, GPT2Config def remap_state_dict_hf_falcon(state_dict, config): def key_mapping_layers(key): return re.sub(r"^transformer.h.", "transformer.layers.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # Word embedding def key_mapping_emb(key): return re.sub( r"^transformer.word_embeddings.", "transformer.embeddings.word_embeddings.", key ) state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) if getattr(config, "tie_word_embeddings"): state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] else: output_embeddings = state_dict.pop("lm_head.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. state_dict["lm_head.weight"] = F.pad( output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) ) output_embeddings_bias = state_dict.pop("lm_head.bias") state_dict["lm_head.bias"] = F.pad( output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0]) ) # LayerNorm def key_mapping_ln(key): key = re.sub( r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key ) key = re.sub( r"^transformer.layers.(\d+).post_attention_layernorm.", r"transformer.layers.\1.norm2.", key, ) key = re.sub(r"^transformer.layers.(\d+).ln_attn.", r"transformer.layers.\1.norm1.", key) key = re.sub(r"^transformer.layers.(\d+).ln_mlp.", r"transformer.layers.\1.norm2.", key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key ) key = re.sub( r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) def key_mapping_attn(key): key = re.sub( r"^transformer.layers.(\d+).self_attention.query_key_value.", r"transformer.layers.\1.mixer.Wqkv.", key, ) key = re.sub( r"^transformer.layers.(\d+).self_attention.dense.", r"transformer.layers.\1.mixer.out_proj.", key, ) return key state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) n_head = config.n_head n_head_kv = getattr(config, "n_head_kv", 1) headdim = config.hidden_size // n_head for l in range(config.n_layer): # The weights are stored in a different layout compared to our implementation Wqkv = rearrange( state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight"), "(group ratio headdim) ... -> group ratio headdim ...", ratio=n_head // n_head_kv + 2, headdim=headdim, ) Wq = rearrange(Wqkv[:, :-2], "group ratio headdim ... -> (group ratio headdim) ...") Wk = rearrange(Wqkv[:, [-2]], "group ratio headdim ... -> (group ratio headdim) ...") Wv = rearrange(Wqkv[:, [-1]], "group ratio headdim ... -> (group ratio headdim) ...") state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0) return state_dict def falcon_config_to_gpt2_config(falcon_config: FalconConfig) -> GPT2Config: # The 40b config uses "n_head_kv" instead of "num_kv_heads" n_head_kv = getattr( falcon_config, "n_head_kv", 1 if getattr(falcon_config, "multi_query", False) else falcon_config.n_head, ) # HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config. # So we have to infer it from the number of heads in the key/value block parallel_block_tied_norm = n_head_kv == 1 return GPT2Config( vocab_size=falcon_config.vocab_size, n_positions=0, # No absolute position embedding n_embd=falcon_config.hidden_size, n_layer=falcon_config.n_layer, n_head=falcon_config.n_head, n_inner=falcon_config.hidden_size * 4, activation_function="gelu", resid_pdrop=falcon_config.hidden_dropout, embd_pdrop=0.0, # There doesn't seem to be any embedding dropout attn_pdrop=falcon_config.attention_dropout, layer_norm_epsilon=falcon_config.layer_norm_epsilon, initializer_range=falcon_config.initializer_range, bos_token_id=falcon_config.bos_token_id, eos_token_id=falcon_config.eos_token_id, # These are new arguments not in the original GPT2Config parallel_block=falcon_config.parallel_attn, n_head_kv=n_head_kv, parallel_block_tied_norm=parallel_block_tied_norm, rotary_emb_fraction=1.0, rotary_emb_interleaved=False, tie_word_embeddings=True, qkv_proj_bias=falcon_config.bias, out_proj_bias=falcon_config.bias, mlp_fc1_bias=falcon_config.bias, mlp_fc2_bias=falcon_config.bias, lm_head_bias=False, )