1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # Copyright (c) 2024, Tri Dao.
- import pytest
- import torch
- import torch.nn.functional as F
- from flash_attn.losses.cross_entropy import CrossEntropyLoss
- is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
- @pytest.mark.parametrize(
- "dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])
- )
- # @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("precompute_lse", [False, True])
- # @pytest.mark.parametrize("precompute_lse", [False])
- @pytest.mark.parametrize("inplace_backward", [False, True])
- # @pytest.mark.parametrize("inplace_backward", [False])
- @pytest.mark.parametrize("lse_square_scale", [0.0, 1e-2])
- @pytest.mark.parametrize("return_z_loss", [False, True])
- # @pytest.mark.parametrize("lse_square_scale", [1e-2])
- @pytest.mark.parametrize("logit_scale", [1.0, 0.7])
- # @pytest.mark.parametrize("logit_scale", [1.0])
- @pytest.mark.parametrize("smoothing", [0.0, 0.9])
- # @pytest.mark.parametrize("smoothing", [0.0])
- @pytest.mark.parametrize("vocab_size", [50257, 128256]) # test vocab larger than 64k for split
- # @pytest.mark.parametrize("vocab_size", [12])
- def test_cross_entropy_loss(
- vocab_size,
- smoothing,
- logit_scale,
- lse_square_scale,
- return_z_loss,
- inplace_backward,
- precompute_lse,
- dtype,
- ):
- if precompute_lse and (logit_scale != 1.0 or smoothing != 0.0):
- pytest.skip("precompute_lse only works with logit_scale=1.0 and smoothing=0.0")
- device = "cuda"
- rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
- # set seed
- torch.random.manual_seed(0)
- batch_size = 1 if dtype == torch.float32 else 4 # Otherwise OOM
- seqlen = 4096 if lse_square_scale == 0.0 and logit_scale == 1.0 else 1024 # Otherwise OOM
- x_pt = torch.randn(
- batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True
- )
- x = x_pt.detach().clone().requires_grad_()
- y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
- if batch_size * seqlen > 10:
- y[torch.randperm(batch_size * seqlen)[:10]] = -100
- model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing)
- model = CrossEntropyLoss(
- label_smoothing=smoothing,
- logit_scale=logit_scale,
- lse_square_scale=lse_square_scale,
- return_z_loss=return_z_loss,
- inplace_backward=inplace_backward,
- )
- if precompute_lse:
- with torch.no_grad():
- lse = torch.logsumexp(x.float(), dim=-1)
- else:
- lse = None
- if return_z_loss:
- out, out_z_loss = model(x, y, precomputed_lse=lse)
- else:
- out = model(x, y, precomputed_lse=lse)
- x_pt_scaled = (x_pt.float() * logit_scale) if logit_scale != 1.0 else x_pt.float()
- out_pt = model_pt(x_pt_scaled, y)
- if lse_square_scale > 0.0:
- lse_pt = torch.logsumexp(x_pt_scaled, dim=-1)
- z_loss_pt = lse_square_scale * (lse_pt[y != -100] ** 2).mean()
- if return_z_loss:
- assert torch.allclose(out_z_loss, z_loss_pt, rtol=rtol, atol=atol)
- out_pt += z_loss_pt
- assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6)
- g = torch.randn_like(out)
- out_pt.backward(g)
- out.backward(g)
- assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
|