# Copyright (c) 2024, Tri Dao. import pytest import torch import torch.nn.functional as F from flash_attn.losses.cross_entropy import CrossEntropyLoss is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 @pytest.mark.parametrize( "dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []) ) # @pytest.mark.parametrize("dtype", [torch.float16]) @pytest.mark.parametrize("precompute_lse", [False, True]) # @pytest.mark.parametrize("precompute_lse", [False]) @pytest.mark.parametrize("inplace_backward", [False, True]) # @pytest.mark.parametrize("inplace_backward", [False]) @pytest.mark.parametrize("lse_square_scale", [0.0, 1e-2]) @pytest.mark.parametrize("return_z_loss", [False, True]) # @pytest.mark.parametrize("lse_square_scale", [1e-2]) @pytest.mark.parametrize("logit_scale", [1.0, 0.7]) # @pytest.mark.parametrize("logit_scale", [1.0]) @pytest.mark.parametrize("smoothing", [0.0, 0.9]) # @pytest.mark.parametrize("smoothing", [0.0]) @pytest.mark.parametrize("vocab_size", [50257, 128256]) # test vocab larger than 64k for split # @pytest.mark.parametrize("vocab_size", [12]) def test_cross_entropy_loss( vocab_size, smoothing, logit_scale, lse_square_scale, return_z_loss, inplace_backward, precompute_lse, dtype, ): if precompute_lse and (logit_scale != 1.0 or smoothing != 0.0): pytest.skip("precompute_lse only works with logit_scale=1.0 and smoothing=0.0") device = "cuda" rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) # set seed torch.random.manual_seed(0) batch_size = 1 if dtype == torch.float32 else 4 # Otherwise OOM seqlen = 4096 if lse_square_scale == 0.0 and logit_scale == 1.0 else 1024 # Otherwise OOM x_pt = torch.randn( batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True ) x = x_pt.detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) if batch_size * seqlen > 10: y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing) model = CrossEntropyLoss( label_smoothing=smoothing, logit_scale=logit_scale, lse_square_scale=lse_square_scale, return_z_loss=return_z_loss, inplace_backward=inplace_backward, ) if precompute_lse: with torch.no_grad(): lse = torch.logsumexp(x.float(), dim=-1) else: lse = None if return_z_loss: out, out_z_loss = model(x, y, precomputed_lse=lse) else: out = model(x, y, precomputed_lse=lse) x_pt_scaled = (x_pt.float() * logit_scale) if logit_scale != 1.0 else x_pt.float() out_pt = model_pt(x_pt_scaled, y) if lse_square_scale > 0.0: lse_pt = torch.logsumexp(x_pt_scaled, dim=-1) z_loss_pt = lse_square_scale * (lse_pt[y != -100] ** 2).mean() if return_z_loss: assert torch.allclose(out_z_loss, z_loss_pt, rtol=rtol, atol=atol) out_pt += z_loss_pt assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)