123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- # Copyright (c) 2023, Tri Dao.
- import torch
- import torch.nn as nn
- from flash_attn.ops.triton.cross_entropy import cross_entropy_loss
- class CrossEntropyLoss(nn.Module):
- def __init__(
- self,
- ignore_index=-100,
- reduction="mean",
- label_smoothing=0.0,
- logit_scale=1.0,
- lse_square_scale=0.0,
- inplace_backward=False,
- process_group=None,
- return_z_loss=False,
- ):
- """
- Arguments:
- ignore_index: int. If labels == ignore_index, the loss is set to 0.0.
- label_smoothing: float
- lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss.
- This is also referred to as "z-loss".
- inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits.
- This saves memory.
- process_group: if not None, we're doing Tensor Parallel: each process is responsible for
- one part of the vocab. The loss will be aggregated across processes.
- return_z_loss: bool. If True, we return the component of the loss contributed by
- the lse_square_scale value. This value is only for logging and does not support
- backprop.
- """
- super().__init__()
- if reduction not in ["mean", "none", "sum"]:
- raise NotImplementedError("Only support reduction = 'mean' or 'none' or 'sum'")
- self.ignore_index = ignore_index
- self.reduction = reduction
- self.label_smoothing = label_smoothing
- self.logit_scale = logit_scale
- self.lse_square_scale = lse_square_scale
- self.inplace_backward = inplace_backward
- self.process_group = process_group
- self.return_z_loss = return_z_loss
- def forward(self, input, target):
- """
- Arguments:
- input: (batch, vocab_size)
- target: (batch,)
- Returns:
- losses: (batch,) if reduction is 'none', else (1,), dtype float
- z_loss: (batch,) if reduction is 'none', else (1,), dtype float (if self.return_z_loss)
- """
- assert input.is_cuda and target.is_cuda, "Only support CUDA tensors"
- loss, z_loss = cross_entropy_loss(
- input,
- target,
- label_smoothing=self.label_smoothing,
- logit_scale=self.logit_scale,
- lse_square_scale=self.lse_square_scale,
- ignore_index=self.ignore_index,
- inplace_backward=self.inplace_backward,
- process_group=self.process_group,
- )
- if self.reduction == "mean":
- loss = loss.sum() / (target != self.ignore_index).sum()
- elif self.reduction == "sum":
- loss = loss.sum()
- else:
- loss = loss
- if not self.return_z_loss:
- return loss
- if self.reduction == "mean":
- z_loss = z_loss.sum() / (target != self.ignore_index).sum()
- elif self.reduction == "sum":
- z_loss = z_loss.sum()
- else:
- z_loss = z_loss
- return loss, z_loss
|