# Copyright (c) 2023, Tri Dao. import torch import torch.nn as nn from flash_attn.ops.triton.cross_entropy import cross_entropy_loss class CrossEntropyLoss(nn.Module): def __init__( self, ignore_index=-100, reduction="mean", label_smoothing=0.0, logit_scale=1.0, lse_square_scale=0.0, inplace_backward=False, process_group=None, return_z_loss=False, ): """ Arguments: ignore_index: int. If labels == ignore_index, the loss is set to 0.0. label_smoothing: float lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss. This is also referred to as "z-loss". inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits. This saves memory. process_group: if not None, we're doing Tensor Parallel: each process is responsible for one part of the vocab. The loss will be aggregated across processes. return_z_loss: bool. If True, we return the component of the loss contributed by the lse_square_scale value. This value is only for logging and does not support backprop. """ super().__init__() if reduction not in ["mean", "none", "sum"]: raise NotImplementedError("Only support reduction = 'mean' or 'none' or 'sum'") self.ignore_index = ignore_index self.reduction = reduction self.label_smoothing = label_smoothing self.logit_scale = logit_scale self.lse_square_scale = lse_square_scale self.inplace_backward = inplace_backward self.process_group = process_group self.return_z_loss = return_z_loss def forward(self, input, target): """ Arguments: input: (batch, vocab_size) target: (batch,) Returns: losses: (batch,) if reduction is 'none', else (1,), dtype float z_loss: (batch,) if reduction is 'none', else (1,), dtype float (if self.return_z_loss) """ assert input.is_cuda and target.is_cuda, "Only support CUDA tensors" loss, z_loss = cross_entropy_loss( input, target, label_smoothing=self.label_smoothing, logit_scale=self.logit_scale, lse_square_scale=self.lse_square_scale, ignore_index=self.ignore_index, inplace_backward=self.inplace_backward, process_group=self.process_group, ) if self.reduction == "mean": loss = loss.sum() / (target != self.ignore_index).sum() elif self.reduction == "sum": loss = loss.sum() else: loss = loss if not self.return_z_loss: return loss if self.reduction == "mean": z_loss = z_loss.sum() / (target != self.ignore_index).sum() elif self.reduction == "sum": z_loss = z_loss.sum() else: z_loss = z_loss return loss, z_loss