1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
- import torch
- import torch.nn.functional as F
- from einops import rearrange
- def unpad_input(hidden_states, attention_mask, unused_mask=None):
- """
- Arguments:
- hidden_states: (batch, seqlen, ...)
- attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
- unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
- Return:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
- indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
- cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
- max_seqlen_in_batch: int
- seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
- """
- all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask
- seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
- used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
- indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
- max_seqlen_in_batch = seqlens_in_batch.max().item()
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
- # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
- # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
- # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
- # index with integer indices.
- return (
- rearrange(hidden_states, "b s ... -> (b s) ...")[indices],
- indices,
- cu_seqlens,
- max_seqlen_in_batch,
- used_seqlens_in_batch,
- )
- def pad_input(hidden_states, indices, batch, seqlen):
- """
- Arguments:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
- indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
- batch: int, batch size for the padded sequence.
- seqlen: int, maximum sequence length for the padded sequence.
- Return:
- hidden_states: (batch, seqlen, ...)
- """
- dim = hidden_states.shape[1:]
- output = torch.zeros((batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype)
- output[indices] = hidden_states
- return rearrange(output, "(b s) ... -> b s ...", b=batch)
|