123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652 |
- import torch
- import triton
- import triton.language as tl
- from .utils import get_shape_from_layout, get_strides_from_layout, is_cdna, is_rdna, DEBUG, AUTOTUNE
- @triton.jit
- def cdiv_fn(x, y):
- return (x + y - 1) // y
- @triton.jit
- def dropout_offsets(philox_seed, philox_offset, dropout_p, m, n, stride):
- ms = tl.arange(0, m)
- ns = tl.arange(0, n)
- return philox_offset + ms[:, None] * stride + ns[None, :]
- @triton.jit
- def dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride):
- rng_offsets = dropout_offsets(philox_seed, philox_offset, dropout_p, m, n, stride).to(tl.uint32)
- # TODO: use tl.randint for better performance
- return tl.rand(philox_seed, rng_offsets)
- @triton.jit
- def dropout_mask(philox_seed, philox_offset, dropout_p, m, n, stride):
- rng_output = dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride)
- rng_keep = rng_output > dropout_p
- return rng_keep
- # Convenience function to load with optional boundary checks.
- # "First" is the major dim, "second" is the minor dim.
- @triton.jit
- def load_fn(ptrs, offset_first, offset_second, boundary_first, boundary_second):
- if offset_first is not None and offset_second is not None:
- mask = (offset_first[:, None] < boundary_first) & \
- (offset_second[None, :] < boundary_second)
- tensor = tl.load(ptrs, mask=mask, other=0.0)
- elif offset_first is not None:
- mask = offset_first[:, None] < boundary_first
- tensor = tl.load(ptrs, mask=mask, other=0.0)
- elif offset_second is not None:
- mask = offset_second[None, :] < boundary_second
- tensor = tl.load(ptrs, mask=mask, other=0.0)
- else:
- tensor = tl.load(ptrs)
- return tensor
- @triton.jit
- def compute_alibi_block(alibi_slope, seqlen_q, seqlen_k, offs_m, offs_n, transpose=False):
- # when seqlen_k and seqlen_q are different we want the diagonal to stick to the bottom right of the attention matrix
- # for casual mask we want something like this where (1 is kept and 0 is masked)
- # seqlen_q = 2 and seqlen_k = 5
- # 1 1 1 1 0
- # 1 1 1 1 1
- # seqlen_q = 5 and seqlen_k = 2
- # 0 0
- # 0 0
- # 0 0
- # 1 0
- # 1 1
- # for alibi the diagonal is 0 indicating no penalty for attending to that spot and increasing penalty for attending further from the diagonal
- # e.g. alibi_slope = 1, seqlen_q = 2, seqlen_k = 5, offs_m = [0, 1, 2, 3], offs_n = [0, 1, 2, 3, 4], transpose = False
- # 1. offs_m[:,None] = [[0],
- # [1],
- # 2. offs_m[:,None] + seqlen_k = [[5],
- # [6],
- # 3. offs_m[:,None] + seqlen_k - seqlen_q = [[3],
- # [4],
- # 4. offs_m[:,None] + seqlen_k - seqlen_q - offs_n[None,:] = [[3], - [[0, 1, 2, 3, 4]] = [[ 3, 2, 1, 0,-1],
- # [4], [ 4, 3, 2, 1, 0]]
- # 5. -1 * alibi_slope * tl.abs(relative_pos_block) = [[ -3, -2, -1, 0,-1],
- # [ -4, -3, -2, -1, 0]],
- relative_pos_block = offs_m[:, None] + seqlen_k - seqlen_q - offs_n[None, :]
- alibi_block = -1 * alibi_slope * tl.abs(relative_pos_block)
- if transpose:
- return alibi_block.T
- else:
- return alibi_block
- @triton.jit
- def _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, start_m,
- actual_seqlen_k, actual_seqlen_q, dropout_p, philox_seed, batch_philox_offset, exp_scores_ptrs,
- block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, alibi_slope, score_ptrs, scores_scaled_shifted_ptrs,
- IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr,
- OFFS_M: tl.constexpr, OFFS_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, MASK_STEPS: tl.constexpr,
- ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr,
- ACTUAL_BLOCK_DMODEL: tl.constexpr, SM_SCALE: tl.constexpr, USE_EXP2: tl.constexpr,
- RETURN_SCORES: tl.constexpr):
- if USE_EXP2:
- RCP_LN2: tl.constexpr = 1.4426950408889634
-
- # loop over k, v, and update accumulator
- for start_n in range(block_min, block_max, BLOCK_N):
- # For padded blocks, we will overrun the tensor size if
- # we load all BLOCK_N. For others, the blocks are all within range.
- if MASK_STEPS:
- k_offs_n = start_n + tl.arange(0, BLOCK_N)
- else:
- k_offs_n = None
- k_offs_k = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL)
- k = load_fn(k_ptrs, k_offs_k, k_offs_n, ACTUAL_BLOCK_DMODEL, actual_seqlen_k)
- if PRE_LOAD_V:
- # We can use the same offsets as k, just with dims transposed.
- v = load_fn(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k, ACTUAL_BLOCK_DMODEL)
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- # We start from end of seqlen_k so only the first iteration would need
- # to be checked for padding if it is not a multiple of block_n
- # TODO: This can be optimized to only be true for the padded block.
- if MASK_STEPS:
- # If this is the last block / iteration, we want to
- # mask if the sequence length is not a multiple of block size
- # a solution is to always do BLOCK_M // BLOCK_N + 1 steps if not is_modulo_mn.
- # last step might get wasted but that is okay. check if this masking works For
- # that case.
- if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0):
- boundary_m = tl.full([BLOCK_M], actual_seqlen_k, dtype=tl.int32)
- size_n = start_n + OFFS_N[None, :]
- mask = size_n < boundary_m[:, None]
- qk = tl.where(mask, qk, float("-inf"))
-
- # -- compute qk ----
- qk += tl.dot(q, k)
- qk_scaled = qk * SM_SCALE
- if RETURN_SCORES:
- score_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k)
- tl.store(score_ptrs, qk_scaled, mask=score_mask)
- if IS_CAUSAL:
- causal_boundary = start_n + offs_n_causal
- causal_mask = OFFS_M[:, None] >= causal_boundary[None, :]
- qk_scaled = tl.where(causal_mask, qk_scaled, float("-inf"))
- if bias_ptrs is not None:
- bias_offs_n = start_n + tl.arange(0, BLOCK_N) if MASK_STEPS else None
- bias = load_fn(bias_ptrs, OFFS_M, bias_offs_n, actual_seqlen_q, actual_seqlen_k)
- qk_scaled += bias
- if alibi_slope is not None:
- # Compute the global position of each token within the sequence
- global_m_positions = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- global_n_positions = start_n + tl.arange(0, BLOCK_N)
- alibi_block = compute_alibi_block(alibi_slope, actual_seqlen_q, actual_seqlen_k, global_m_positions,
- global_n_positions)
- qk_scaled += alibi_block
- # get max scores so far
- m_ij = tl.maximum(m_i, tl.max(qk_scaled, 1))
- # scale and subtract max
- q_shifted = qk_scaled - m_ij[:, None]
- if RETURN_SCORES:
- # NOTE: the returned score is not the same as the reference because we need to adjust as we find new maxes per block. We are not doing that
- scores_scaled_shifted_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k)
- tl.store(scores_scaled_shifted_ptrs, q_shifted, mask=scores_scaled_shifted_mask)
-
- # Compute scaled QK and softmax probabilities
- if USE_EXP2:
- p = tl.math.exp2(q_shifted * RCP_LN2)
- else:
- p = tl.math.exp(q_shifted)
- # CAVEAT: Must update l_ij before applying dropout
- l_ij = tl.sum(p, 1)
- if ENABLE_DROPOUT:
- philox_offset = batch_philox_offset + start_m * BLOCK_M * actual_seqlen_k + start_n - BLOCK_N
- keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, actual_seqlen_k)
- if RETURN_SCORES:
- # NOTE: the returned score is not the same as the reference because we need to adjust as we find new maxes per block. We are not doing that
- exp_score_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k)
- tl.store(exp_scores_ptrs, tl.where(keep, p, -p), mask=exp_score_mask)
- p = tl.where(keep, p, 0.0)
- elif RETURN_SCORES:
- # NOTE: the returned score is not the same as the reference because we need to adjust as we find new maxes per block. We are not doing that
- exp_score_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k)
- tl.store(exp_scores_ptrs, p, mask=exp_score_mask)
-
- # -- update output accumulator --
- # alpha is an adjustment factor for acc and li as we loop and find new maxes
- # store the diff in maxes to adjust acc and li as we discover new maxes
- m_diff = m_i - m_ij
- if USE_EXP2:
- alpha = tl.math.exp2(m_diff * RCP_LN2)
- else:
- alpha = tl.math.exp(m_diff)
- acc = acc * alpha[:, None]
- if not PRE_LOAD_V:
- v = load_fn(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k, ACTUAL_BLOCK_DMODEL)
- # -- update m_i and l_i
- l_i = l_i * alpha + l_ij
- # update m_i and l_i
- m_i = m_ij
- acc += tl.dot(p.to(v.type.element_ty), v)
- k_ptrs += BLOCK_N * stride_kn
- v_ptrs += BLOCK_N * stride_vk
- if bias_ptrs is not None:
- bias_ptrs += BLOCK_N * stride_bn
- if RETURN_SCORES:
- score_ptrs += BLOCK_N
- scores_scaled_shifted_ptrs += BLOCK_N
- exp_scores_ptrs += BLOCK_N
- return acc, l_i, m_i
- def get_cdna_autotune_configs():
- return [
- triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 3, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- triton.Config({'BLOCK_M': 64, 'BLOCK_N': 64, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- # Fall-back config.
- triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=4),
- ], ['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK']
- def get_rdna_autotune_configs():
- return [
- triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- # Fall-back config.
- triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1,
- num_warps=2),
- ], ['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK']
- def get_autotune_configs():
- if AUTOTUNE:
- if is_rdna():
- return get_rdna_autotune_configs()
- elif is_cdna():
- return get_cdna_autotune_configs()
- else:
- raise ValueError("Unknown Device Type")
- else:
- return [
- triton.Config(
- {"BLOCK_M": 64, "BLOCK_N": 64, "waves_per_eu": 1, "PRE_LOAD_V": False},
- num_stages=1,
- num_warps=4,
- ),
- ], [
- "IS_CAUSAL",
- "dropout_p",
- "MAX_SEQLENS_Q",
- "MAX_SEQLENS_K",
- "ACTUAL_BLOCK_DMODEL",
- "VARLEN",
- "HQ",
- "HK",
- ]
- autotune_configs, autotune_keys = get_autotune_configs()
- @triton.autotune(
- configs=autotune_configs,
- key=autotune_keys,
- use_cuda_graph=True,
- )
- @triton.jit
- def attn_fwd(Q, K, V, bias, SM_SCALE: tl.constexpr, LSE, Out, stride_qz, stride_qh, stride_qm, stride_qk,
- stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
- stride_oz, stride_oh, stride_om, stride_on, stride_bz, stride_bh, stride_bm, stride_bn, stride_az, stride_ah,
- stride_sz, stride_sh, stride_sm, stride_sn, stride_lse_z, stride_lse_h, stride_lse_m, cu_seqlens_q, cu_seqlens_k,
- dropout_p, philox_seed, philox_offset_base, scores, scores_scaled_shifted, exp_scores, alibi_slopes, HQ: tl.constexpr,
- HK: tl.constexpr, ACTUAL_BLOCK_DMODEL: tl.constexpr, MAX_SEQLENS_Q: tl.constexpr,
- MAX_SEQLENS_K: tl.constexpr, VARLEN: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr,
- BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, USE_BIAS: tl.constexpr,
- ENABLE_DROPOUT: tl.constexpr, RETURN_SCORES: tl.constexpr, USE_ALIBI: tl.constexpr, USE_EXP2: tl.constexpr):
- start_m = tl.program_id(0)
- off_h_q = tl.program_id(1)
- off_z = tl.program_id(2)
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- offs_n = tl.arange(0, BLOCK_N)
- offs_d = tl.arange(0, BLOCK_DMODEL)
- if VARLEN:
- cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z)
- cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1)
- # print("cu_seqlens_q_start:", cu_seqlens_q_start)
- seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start
- # We have a one-size-fits-all grid in id(0). Some seqlens might be too
- # small for all start_m so for those we return early.
- if start_m * BLOCK_M > seqlen_q:
- return
- cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z)
- cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1)
- seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start
- else:
- cu_seqlens_q_start = 0
- cu_seqlens_k_start = 0
- seqlen_q = MAX_SEQLENS_Q
- seqlen_k = MAX_SEQLENS_K
- # Now we compute whether we need to exit early due to causal masking.
- # This is because for seqlen_q > seqlen_k, M rows of the attn scores
- # are completely masked, resulting in 0s written to the output, and
- # inf written to LSE. We don't need to do any GEMMs in this case.
- # This block of code determines what N is, and if this WG is operating
- # on those M rows.
- n_blocks = cdiv_fn(seqlen_k, BLOCK_N)
- if (IS_CAUSAL):
- # If seqlen_q == seqlen_k, the attn scores are a square matrix.
- # If seqlen_q != seqlen_k, attn scores are rectangular which means
- # the causal mask boundary is bottom right aligned, and ends at either
- # the top edge (seqlen_q < seqlen_k) or left edge.
- # This captures the decrease in n_blocks if we have a rectangular attn matrix
- n_blocks_seqlen = cdiv_fn((start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N)
- # This is what adjusts the block_max for the current WG, only
- # if IS_CAUSAL. Otherwise we want to always iterate through all n_blocks
- n_blocks = min(n_blocks, n_blocks_seqlen)
- # If we have no blocks after adjusting for seqlen deltas, this WG is part of
- # the blocks that are all 0. We exit early.
- if n_blocks <= 0:
- o_offset = Out + off_z * stride_oz + off_h_q * stride_oh + cu_seqlens_q_start * stride_om
- o_ptrs = o_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_on
- acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=Out.type.element_ty)
- o_ptrs_mask = offs_m[:, None] < seqlen_q
- # We still need to write 0s to the result
- tl.store(o_ptrs, acc, mask=o_ptrs_mask)
- # The tensor allocated for L is based on MAX_SEQLENS_Q as that is
- # statically known.
- l_offset = LSE + off_z * stride_lse_z + off_h_q * stride_lse_h + cu_seqlens_q_start * stride_lse_m
- l_ptrs = l_offset + offs_m * stride_lse_m
-
- l = tl.full([BLOCK_M], value=0.0, dtype=tl.float32)
-
- # mask_m_offsets = start_m + tl.arange(0, BLOCK_M)
- # lse_mask = mask_m_offsets < causal_start_idx
- # softmax_lse = tl.where(lse_mask, 0.0, softmax_lse)
- l_ptrs_mask = offs_m < MAX_SEQLENS_Q
- tl.store(l_ptrs, l, mask=l_ptrs_mask)
- # TODO: Should dropout and return encoded softmax be handled here too?
- return
- # If MQA / GQA, set the K and V head offsets appropriately.
- GROUP_SIZE: tl.constexpr = HQ // HK
- if GROUP_SIZE != 1:
- off_h_k = off_h_q // GROUP_SIZE
- else:
- off_h_k = off_h_q
- n_extra_tokens = 0
- # print("n_extra_tokens:", n_extra_tokens)
- # print("seqlen_k:", seqlen_k)
- # print("BLOCK_N:", BLOCK_N)
- # return
- if seqlen_k < BLOCK_N:
- n_extra_tokens = BLOCK_N - seqlen_k
- elif seqlen_k % BLOCK_N:
- n_extra_tokens = seqlen_k % BLOCK_N
- PADDED_HEAD: tl.constexpr = (ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL)
- # Compute pointers for all the tensors used in this kernel.
- q_offset = Q + off_z * stride_qz + off_h_q * stride_qh + cu_seqlens_q_start * stride_qm
- q_ptrs = q_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk
- k_offset = K + off_z * stride_kz + off_h_k * stride_kh + cu_seqlens_k_start * stride_kn
- k_ptrs = k_offset + offs_d[:, None] * stride_kk + offs_n[None, :] * stride_kn
- v_offset = V + off_z * stride_vz + off_h_k * stride_vh + cu_seqlens_k_start * stride_vk
- v_ptrs = v_offset + offs_n[:, None] * stride_vk + offs_d[None, :] * stride_vn
- if USE_BIAS:
- # Note: this might get large enough to overflow on some configs
- bias_offset = off_h_q * stride_bh
- bias_ptrs = bias + bias_offset + offs_m[:, None] * stride_bm + offs_n[None, :] * stride_bn
- else:
- bias_ptrs = None
- if USE_ALIBI:
- a_offset = off_z * stride_az + off_h_q * stride_ah
- alibi_slope = tl.load(alibi_slopes + a_offset)
- else:
- alibi_slope = None
- if RETURN_SCORES:
- scores_offset = scores + off_z * stride_sz + off_h_q * stride_sh + cu_seqlens_q_start * stride_sm
- score_ptrs = scores_offset + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn
- scores_scaled_shifted_offset = scores_scaled_shifted + off_z * stride_sz + off_h_q * stride_sh + cu_seqlens_q_start * stride_sm
- scores_scaled_shifted_ptrs = scores_scaled_shifted_offset + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn
-
- exp_scores_offset = exp_scores + off_z * stride_sz + off_h_q * stride_sh + cu_seqlens_q_start * stride_sm
- exp_scores_ptrs = exp_scores_offset + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn
- else:
- score_ptrs = None
- scores_scaled_shifted_ptrs = None
- exp_scores_ptrs = None
- if ENABLE_DROPOUT:
- off_hz = off_z * HQ + off_h_q
- batch_philox_offset = philox_offset_base + off_hz * seqlen_q * seqlen_k
- else:
- batch_philox_offset = 0
- # initialize pointer to m and l
- m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
- l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
- acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
- # Q is loaded once at the beginning and shared by all N blocks.
- q_ptrs_mask = offs_m[:, None] < seqlen_q
- if PADDED_HEAD:
- q_ptrs_mask = q_ptrs_mask & (offs_d[None, :] < ACTUAL_BLOCK_DMODEL)
- q = tl.load(q_ptrs, mask=q_ptrs_mask, other=0.0)
- # Here we compute how many full and masked blocks we have.
- padded_block_k = n_extra_tokens != 0
- is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0)
- if IS_CAUSAL:
- # There are always at least BLOCK_M // BLOCK_N masked blocks.
- # Additionally there might be one more due to dissimilar seqlens.
- masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn)
- else:
- # Padding on Q does not need to be masked in the FA loop.
- masked_blocks = padded_block_k
- # if IS_CAUSAL, not is_modulo_mn does not always result in an additional block.
- # In this case we might exceed n_blocks so pick the min.
- masked_blocks = min(masked_blocks, n_blocks)
- n_full_blocks = n_blocks - masked_blocks
- block_min = 0
- block_max = n_blocks * BLOCK_N
- # Compute for full blocks. Here we set causal to false regardless of its actual
- # value because there is no masking. Similarly we do not need padding.
- if n_full_blocks > 0:
- block_max = (n_blocks - masked_blocks) * BLOCK_N
- acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn,
- start_m, seqlen_k, seqlen_q, dropout_p, philox_seed, batch_philox_offset,
- exp_scores_ptrs,
- # _, _, offs_n_causal, masked_blocks, n_extra_tokens, _
- block_min, block_max, 0, 0, 0, alibi_slope, score_ptrs, scores_scaled_shifted_ptrs,
- # IS_CAUSAL, ....
- False, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n,
- # _, MASK_STEPS, ...
- PRE_LOAD_V, False, ENABLE_DROPOUT, PADDED_HEAD,
- ACTUAL_BLOCK_DMODEL, SM_SCALE, USE_EXP2=USE_EXP2, RETURN_SCORES=RETURN_SCORES)
- block_min = block_max
- block_max = n_blocks * BLOCK_N
- tl.debug_barrier()
- # Remaining blocks, if any, are full / not masked.
- if (masked_blocks > 0):
- if IS_CAUSAL:
- offs_n_causal = offs_n + (seqlen_q - seqlen_k)
- else:
- offs_n_causal = 0
- k_ptrs += n_full_blocks * BLOCK_N * stride_kn
- v_ptrs += n_full_blocks * BLOCK_N * stride_vk
- if USE_BIAS:
- bias_ptrs += n_full_blocks * BLOCK_N * stride_bn
- if RETURN_SCORES:
- score_ptrs += n_full_blocks * BLOCK_N
- scores_scaled_shifted_ptrs += n_full_blocks * BLOCK_N
- exp_scores_ptrs += n_full_blocks * BLOCK_N
- acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn,
- start_m, seqlen_k, seqlen_q, dropout_p, philox_seed, batch_philox_offset,
- exp_scores_ptrs, block_min, block_max, offs_n_causal, masked_blocks,
- n_extra_tokens, alibi_slope, score_ptrs, scores_scaled_shifted_ptrs,
- IS_CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n,
- # _, MASK_STEPS, ...
- PRE_LOAD_V, True, ENABLE_DROPOUT, PADDED_HEAD,
- ACTUAL_BLOCK_DMODEL, SM_SCALE, USE_EXP2=USE_EXP2, RETURN_SCORES=RETURN_SCORES)
- # epilogue
- # This helps the compiler do Newton Raphson on l_i vs on acc which is much larger.
- l_recip = 1 / l_i[:, None]
- acc = acc * l_recip
- if ENABLE_DROPOUT:
- acc = acc / (1 - dropout_p)
- # If seqlen_q > seqlen_k but the delta is not a multiple of BLOCK_M,
- # then we have one block with a row of all NaNs which come from computing
- # softmax over a row of all -infs (-inf - inf = NaN). We check for that here
- # and store 0s where there are NaNs as these rows should've been zeroed out.
- end_m_idx = (start_m + 1) * BLOCK_M
- start_m_idx = start_m * BLOCK_M
- causal_start_idx = seqlen_q - seqlen_k
- acc = acc.to(Out.type.element_ty)
- if IS_CAUSAL:
- if causal_start_idx > start_m_idx and causal_start_idx < end_m_idx:
- out_mask_boundary = tl.full((BLOCK_DMODEL, ), causal_start_idx, dtype=tl.int32)
- mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M)
- out_ptrs_mask = mask_m_offsets[:, None] >= out_mask_boundary[None, :]
- z = 0.0
- acc = tl.where(out_ptrs_mask, acc, z.to(acc.type.element_ty))
-
- # write back LSE(Log Sum Exponents), the log of the normalization constant
- l_offset = LSE + off_z * stride_lse_z + off_h_q * stride_lse_h + cu_seqlens_q_start * stride_lse_m
- l_ptrs = l_offset + offs_m * stride_lse_m
- if USE_EXP2:
- RCP_LN2: tl.constexpr = 1.4426950408889634
- LN2: tl.constexpr = 0.6931471824645996
- # compute log-sum-exp in base 2 units
- mi_base2 = m_i * RCP_LN2
- softmax_lse = mi_base2 + tl.math.log2(l_i)
- # convert back to natural units
- softmax_lse *= LN2
- else:
- softmax_lse = m_i + tl.math.log(l_i)
-
- if IS_CAUSAL:
- # zero out nans caused by -infs when doing causal
- lse_mask = (start_m_idx + tl.arange(0, BLOCK_M)) < causal_start_idx
- softmax_lse = tl.where(lse_mask, 0.0, softmax_lse)
- # If seqlen_q not multiple of BLOCK_M, we need to mask out the last few rows.
- # This is only true for the last M block. For others, overflow_size will be -ve
- overflow_size = end_m_idx - seqlen_q
- if overflow_size > 0:
- boundary = tl.full((BLOCK_M, ), BLOCK_M - overflow_size, dtype=tl.int32)
- l_ptrs_mask = tl.arange(0, BLOCK_M) < boundary
- tl.store(l_ptrs, softmax_lse, mask=l_ptrs_mask) # the log of the normalization constant
- else:
- tl.store(l_ptrs, softmax_lse) # the log of the normalization constant
- # write back O
- o_offset = Out + off_z * stride_oz + off_h_q * stride_oh + cu_seqlens_q_start * stride_om
- o_ptrs = o_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_on
- o_ptrs_mask = tl.full([BLOCK_M, BLOCK_DMODEL], 1, dtype=tl.int1)
- if overflow_size > 0:
- o_ptrs_mask = o_ptrs_mask & (offs_m[:, None] < seqlen_q)
- if PADDED_HEAD:
- o_ptrs_mask = o_ptrs_mask & (offs_d[None, :] < ACTUAL_BLOCK_DMODEL)
- tl.store(o_ptrs, acc.to(Out.dtype.element_ty), mask=o_ptrs_mask)
- def attention_prefill_forward_triton_impl(
- q,
- k,
- v,
- o,
- sm_scale,
- alibi_slopes,
- causal,
- bias,
- dropout_p,
- layout,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlens_q,
- max_seqlens_k,
- return_scores,
- use_exp2):
- if DEBUG:
- print()
- print("attention_prefill_forward_triton_impl")
- print("q:", q, q.shape)
- print("k:", k, k.shape)
- print("v:", v, v.shape)
- print("o:", o, o.shape)
- print("sm_scale:", sm_scale)
- print("alibi_slopes:", alibi_slopes)
- print("causal:", causal)
- print("bias:", bias)
- print("dropout_p:", dropout_p)
- print("layout:", layout)
- print("cu_seqlens_q:", cu_seqlens_q)
- print("cu_seqlens_k:", cu_seqlens_k)
- print("max_seqlens_q:", max_seqlens_q)
- print("max_seqlens_k:", max_seqlens_k)
- print("return_scores:", return_scores)
- print("use_exp2:", use_exp2)
- # check if varlen
- is_varlen = layout == "thd"
- # NOTE: a large bias tensor leads to overflow during pointer arithmetic
- if (bias is not None):
- assert (bias.numel() < 2**31)
- batch, nheads_q, nheads_k, head_size, seqlen_q, seqlen_k = get_shape_from_layout(q, k, layout, cu_seqlens_q, cu_seqlens_k, max_seqlens_q, max_seqlens_k)
- q_strides, k_strides, v_strides, o_strides = get_strides_from_layout(q, k, v, o, layout)
- # Get closest power of 2 over or equal to 32.
- padded_d_model = 1 << (head_size - 1).bit_length()
- # Smallest head_dim supported is 16. If smaller, the tile in the
- # kernel is padded - there is no padding in memory for any dims.
- padded_d_model = max(padded_d_model, 16)
- grid = lambda META: (triton.cdiv(max_seqlens_q, META['BLOCK_M']), nheads_q, batch)
- if return_scores:
- scores = torch.zeros((batch, nheads_q, max_seqlens_q, max_seqlens_k), device=q.device,
- dtype=torch.float32)
- scores_scaled_shifted = torch.zeros((batch, nheads_q, max_seqlens_q, max_seqlens_k), device=q.device,
- dtype=torch.float32)
- scores_strides = (scores.stride(0), scores.stride(1), scores.stride(2), scores.stride(3))
- else:
- scores = None
- scores_scaled_shifted = None
- scores_strides = (0, 0 , 0 , 0)
- # exp_scores is used to validate dropout behavior vs the PyTorch SDPA math backend reference. We zero this out
- # to give a consistent starting point and then populate it with the output of softmax with the sign bit set according
- # to the dropout mask. The resulting return allows this mask to be fed into the reference implementation for testing
- # only. This return holds no useful output aside from debugging.
- if return_scores:
- exp_scores = torch.zeros((batch, nheads_q, max_seqlens_q, max_seqlens_k), device=q.device,
- dtype=torch.float32)
- else:
- exp_scores = None
- # stores LSE the log of the normalization constant / sum of expoential score(unnormalzied probablities)
- if is_varlen:
- softmax_lse = torch.empty((q.shape[0], nheads_q), device=q.device, dtype=torch.float32)
- stride_lse_m, stride_lse_h = softmax_lse.stride()
- stride_lse_z = 0
- else:
- softmax_lse = torch.empty((batch, nheads_q, max_seqlens_q), device=q.device, dtype=torch.float32)
- stride_lse_z, stride_lse_h, stride_lse_m = softmax_lse.stride()
- # Seed the RNG so we get reproducible results for testing.
- philox_seed = 0x1BF52
- philox_offset = 0x1D4B42
- if bias is not None:
- bias_strides = (bias.stride(0), bias.stride(1),bias.stride(2),
- bias.stride(3))
- else:
- bias_strides = (0, 0, 0, 0)
- if alibi_slopes is not None:
- alibi_strides = (alibi_slopes.stride(0), alibi_slopes.stride(1))
- else:
- alibi_strides = (0, 0)
- attn_fwd[grid](q, k, v, bias, sm_scale, softmax_lse, o, *q_strides, *k_strides, *v_strides, *o_strides,
- *bias_strides, *alibi_strides, *scores_strides, stride_lse_z, stride_lse_h, stride_lse_m, cu_seqlens_q, cu_seqlens_k,
- dropout_p=dropout_p, philox_seed=philox_seed, philox_offset_base=philox_offset, scores=scores,
- scores_scaled_shifted=scores_scaled_shifted, exp_scores=exp_scores, alibi_slopes=alibi_slopes,
- HQ=nheads_q, HK=nheads_k, ACTUAL_BLOCK_DMODEL=head_size, MAX_SEQLENS_Q=max_seqlens_q,
- MAX_SEQLENS_K=max_seqlens_k, IS_CAUSAL=causal, VARLEN=is_varlen,
- BLOCK_DMODEL=padded_d_model, USE_BIAS=False if bias is None else True,
- USE_ALIBI=False if alibi_slopes is None else True, ENABLE_DROPOUT=dropout_p
- > 0.0, USE_EXP2=use_exp2, RETURN_SCORES=return_scores)
- return o, softmax_lse, exp_scores, grid, head_size, philox_seed, philox_offset, scores, scores_scaled_shifted
|