import torch import triton import triton.language as tl from .utils import get_shape_from_layout, get_strides_from_layout, is_cdna, is_rdna, DEBUG, AUTOTUNE @triton.jit def cdiv_fn(x, y): return (x + y - 1) // y @triton.jit def dropout_offsets(philox_seed, philox_offset, dropout_p, m, n, stride): ms = tl.arange(0, m) ns = tl.arange(0, n) return philox_offset + ms[:, None] * stride + ns[None, :] @triton.jit def dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride): rng_offsets = dropout_offsets(philox_seed, philox_offset, dropout_p, m, n, stride).to(tl.uint32) # TODO: use tl.randint for better performance return tl.rand(philox_seed, rng_offsets) @triton.jit def dropout_mask(philox_seed, philox_offset, dropout_p, m, n, stride): rng_output = dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride) rng_keep = rng_output > dropout_p return rng_keep # Convenience function to load with optional boundary checks. # "First" is the major dim, "second" is the minor dim. @triton.jit def load_fn(ptrs, offset_first, offset_second, boundary_first, boundary_second): if offset_first is not None and offset_second is not None: mask = (offset_first[:, None] < boundary_first) & \ (offset_second[None, :] < boundary_second) tensor = tl.load(ptrs, mask=mask, other=0.0) elif offset_first is not None: mask = offset_first[:, None] < boundary_first tensor = tl.load(ptrs, mask=mask, other=0.0) elif offset_second is not None: mask = offset_second[None, :] < boundary_second tensor = tl.load(ptrs, mask=mask, other=0.0) else: tensor = tl.load(ptrs) return tensor @triton.jit def compute_alibi_block(alibi_slope, seqlen_q, seqlen_k, offs_m, offs_n, transpose=False): # when seqlen_k and seqlen_q are different we want the diagonal to stick to the bottom right of the attention matrix # for casual mask we want something like this where (1 is kept and 0 is masked) # seqlen_q = 2 and seqlen_k = 5 # 1 1 1 1 0 # 1 1 1 1 1 # seqlen_q = 5 and seqlen_k = 2 # 0 0 # 0 0 # 0 0 # 1 0 # 1 1 # for alibi the diagonal is 0 indicating no penalty for attending to that spot and increasing penalty for attending further from the diagonal # e.g. alibi_slope = 1, seqlen_q = 2, seqlen_k = 5, offs_m = [0, 1, 2, 3], offs_n = [0, 1, 2, 3, 4], transpose = False # 1. offs_m[:,None] = [[0], # [1], # 2. offs_m[:,None] + seqlen_k = [[5], # [6], # 3. offs_m[:,None] + seqlen_k - seqlen_q = [[3], # [4], # 4. offs_m[:,None] + seqlen_k - seqlen_q - offs_n[None,:] = [[3], - [[0, 1, 2, 3, 4]] = [[ 3, 2, 1, 0,-1], # [4], [ 4, 3, 2, 1, 0]] # 5. -1 * alibi_slope * tl.abs(relative_pos_block) = [[ -3, -2, -1, 0,-1], # [ -4, -3, -2, -1, 0]], relative_pos_block = offs_m[:, None] + seqlen_k - seqlen_q - offs_n[None, :] alibi_block = -1 * alibi_slope * tl.abs(relative_pos_block) if transpose: return alibi_block.T else: return alibi_block @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, start_m, actual_seqlen_k, actual_seqlen_q, dropout_p, philox_seed, batch_philox_offset, exp_scores_ptrs, block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, alibi_slope, score_ptrs, scores_scaled_shifted_ptrs, IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, OFFS_M: tl.constexpr, OFFS_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, MASK_STEPS: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, ACTUAL_BLOCK_DMODEL: tl.constexpr, SM_SCALE: tl.constexpr, USE_EXP2: tl.constexpr, RETURN_SCORES: tl.constexpr): if USE_EXP2: RCP_LN2: tl.constexpr = 1.4426950408889634 # loop over k, v, and update accumulator for start_n in range(block_min, block_max, BLOCK_N): # For padded blocks, we will overrun the tensor size if # we load all BLOCK_N. For others, the blocks are all within range. if MASK_STEPS: k_offs_n = start_n + tl.arange(0, BLOCK_N) else: k_offs_n = None k_offs_k = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL) k = load_fn(k_ptrs, k_offs_k, k_offs_n, ACTUAL_BLOCK_DMODEL, actual_seqlen_k) if PRE_LOAD_V: # We can use the same offsets as k, just with dims transposed. v = load_fn(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k, ACTUAL_BLOCK_DMODEL) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) # We start from end of seqlen_k so only the first iteration would need # to be checked for padding if it is not a multiple of block_n # TODO: This can be optimized to only be true for the padded block. if MASK_STEPS: # If this is the last block / iteration, we want to # mask if the sequence length is not a multiple of block size # a solution is to always do BLOCK_M // BLOCK_N + 1 steps if not is_modulo_mn. # last step might get wasted but that is okay. check if this masking works For # that case. if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0): boundary_m = tl.full([BLOCK_M], actual_seqlen_k, dtype=tl.int32) size_n = start_n + OFFS_N[None, :] mask = size_n < boundary_m[:, None] qk = tl.where(mask, qk, float("-inf")) # -- compute qk ---- qk += tl.dot(q, k) qk_scaled = qk * SM_SCALE if RETURN_SCORES: score_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k) tl.store(score_ptrs, qk_scaled, mask=score_mask) if IS_CAUSAL: causal_boundary = start_n + offs_n_causal causal_mask = OFFS_M[:, None] >= causal_boundary[None, :] qk_scaled = tl.where(causal_mask, qk_scaled, float("-inf")) if bias_ptrs is not None: bias_offs_n = start_n + tl.arange(0, BLOCK_N) if MASK_STEPS else None bias = load_fn(bias_ptrs, OFFS_M, bias_offs_n, actual_seqlen_q, actual_seqlen_k) qk_scaled += bias if alibi_slope is not None: # Compute the global position of each token within the sequence global_m_positions = start_m * BLOCK_M + tl.arange(0, BLOCK_M) global_n_positions = start_n + tl.arange(0, BLOCK_N) alibi_block = compute_alibi_block(alibi_slope, actual_seqlen_q, actual_seqlen_k, global_m_positions, global_n_positions) qk_scaled += alibi_block # get max scores so far m_ij = tl.maximum(m_i, tl.max(qk_scaled, 1)) # scale and subtract max q_shifted = qk_scaled - m_ij[:, None] if RETURN_SCORES: # NOTE: the returned score is not the same as the reference because we need to adjust as we find new maxes per block. We are not doing that scores_scaled_shifted_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k) tl.store(scores_scaled_shifted_ptrs, q_shifted, mask=scores_scaled_shifted_mask) # Compute scaled QK and softmax probabilities if USE_EXP2: p = tl.math.exp2(q_shifted * RCP_LN2) else: p = tl.math.exp(q_shifted) # CAVEAT: Must update l_ij before applying dropout l_ij = tl.sum(p, 1) if ENABLE_DROPOUT: philox_offset = batch_philox_offset + start_m * BLOCK_M * actual_seqlen_k + start_n - BLOCK_N keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, actual_seqlen_k) if RETURN_SCORES: # NOTE: the returned score is not the same as the reference because we need to adjust as we find new maxes per block. We are not doing that exp_score_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k) tl.store(exp_scores_ptrs, tl.where(keep, p, -p), mask=exp_score_mask) p = tl.where(keep, p, 0.0) elif RETURN_SCORES: # NOTE: the returned score is not the same as the reference because we need to adjust as we find new maxes per block. We are not doing that exp_score_mask = (OFFS_M[:, None] < actual_seqlen_q) & ((start_n + tl.arange(0, BLOCK_N))[None, :] < actual_seqlen_k) tl.store(exp_scores_ptrs, p, mask=exp_score_mask) # -- update output accumulator -- # alpha is an adjustment factor for acc and li as we loop and find new maxes # store the diff in maxes to adjust acc and li as we discover new maxes m_diff = m_i - m_ij if USE_EXP2: alpha = tl.math.exp2(m_diff * RCP_LN2) else: alpha = tl.math.exp(m_diff) acc = acc * alpha[:, None] if not PRE_LOAD_V: v = load_fn(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k, ACTUAL_BLOCK_DMODEL) # -- update m_i and l_i l_i = l_i * alpha + l_ij # update m_i and l_i m_i = m_ij acc += tl.dot(p.to(v.type.element_ty), v) k_ptrs += BLOCK_N * stride_kn v_ptrs += BLOCK_N * stride_vk if bias_ptrs is not None: bias_ptrs += BLOCK_N * stride_bn if RETURN_SCORES: score_ptrs += BLOCK_N scores_scaled_shifted_ptrs += BLOCK_N exp_scores_ptrs += BLOCK_N return acc, l_i, m_i def get_cdna_autotune_configs(): return [ triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 3, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 64, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), # Fall-back config. triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), ], ['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'] def get_rdna_autotune_configs(): return [ triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), # Fall-back config. triton.Config({'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1, num_warps=2), ], ['IS_CAUSAL', 'dropout_p', 'MAX_SEQLENS_Q', 'MAX_SEQLENS_K', 'ACTUAL_BLOCK_DMODEL', 'VARLEN', 'HQ', 'HK'] def get_autotune_configs(): if AUTOTUNE: if is_rdna(): return get_rdna_autotune_configs() elif is_cdna(): return get_cdna_autotune_configs() else: raise ValueError("Unknown Device Type") else: return [ triton.Config( {"BLOCK_M": 64, "BLOCK_N": 64, "waves_per_eu": 1, "PRE_LOAD_V": False}, num_stages=1, num_warps=4, ), ], [ "IS_CAUSAL", "dropout_p", "MAX_SEQLENS_Q", "MAX_SEQLENS_K", "ACTUAL_BLOCK_DMODEL", "VARLEN", "HQ", "HK", ] autotune_configs, autotune_keys = get_autotune_configs() @triton.autotune( configs=autotune_configs, key=autotune_keys, use_cuda_graph=True, ) @triton.jit def attn_fwd(Q, K, V, bias, SM_SCALE: tl.constexpr, LSE, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, stride_bz, stride_bh, stride_bm, stride_bn, stride_az, stride_ah, stride_sz, stride_sh, stride_sm, stride_sn, stride_lse_z, stride_lse_h, stride_lse_m, cu_seqlens_q, cu_seqlens_k, dropout_p, philox_seed, philox_offset_base, scores, scores_scaled_shifted, exp_scores, alibi_slopes, HQ: tl.constexpr, HK: tl.constexpr, ACTUAL_BLOCK_DMODEL: tl.constexpr, MAX_SEQLENS_Q: tl.constexpr, MAX_SEQLENS_K: tl.constexpr, VARLEN: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, USE_BIAS: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_SCORES: tl.constexpr, USE_ALIBI: tl.constexpr, USE_EXP2: tl.constexpr): start_m = tl.program_id(0) off_h_q = tl.program_id(1) off_z = tl.program_id(2) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) if VARLEN: cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) # print("cu_seqlens_q_start:", cu_seqlens_q_start) seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start # We have a one-size-fits-all grid in id(0). Some seqlens might be too # small for all start_m so for those we return early. if start_m * BLOCK_M > seqlen_q: return cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z) cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1) seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start else: cu_seqlens_q_start = 0 cu_seqlens_k_start = 0 seqlen_q = MAX_SEQLENS_Q seqlen_k = MAX_SEQLENS_K # Now we compute whether we need to exit early due to causal masking. # This is because for seqlen_q > seqlen_k, M rows of the attn scores # are completely masked, resulting in 0s written to the output, and # inf written to LSE. We don't need to do any GEMMs in this case. # This block of code determines what N is, and if this WG is operating # on those M rows. n_blocks = cdiv_fn(seqlen_k, BLOCK_N) if (IS_CAUSAL): # If seqlen_q == seqlen_k, the attn scores are a square matrix. # If seqlen_q != seqlen_k, attn scores are rectangular which means # the causal mask boundary is bottom right aligned, and ends at either # the top edge (seqlen_q < seqlen_k) or left edge. # This captures the decrease in n_blocks if we have a rectangular attn matrix n_blocks_seqlen = cdiv_fn((start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N) # This is what adjusts the block_max for the current WG, only # if IS_CAUSAL. Otherwise we want to always iterate through all n_blocks n_blocks = min(n_blocks, n_blocks_seqlen) # If we have no blocks after adjusting for seqlen deltas, this WG is part of # the blocks that are all 0. We exit early. if n_blocks <= 0: o_offset = Out + off_z * stride_oz + off_h_q * stride_oh + cu_seqlens_q_start * stride_om o_ptrs = o_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_on acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=Out.type.element_ty) o_ptrs_mask = offs_m[:, None] < seqlen_q # We still need to write 0s to the result tl.store(o_ptrs, acc, mask=o_ptrs_mask) # The tensor allocated for L is based on MAX_SEQLENS_Q as that is # statically known. l_offset = LSE + off_z * stride_lse_z + off_h_q * stride_lse_h + cu_seqlens_q_start * stride_lse_m l_ptrs = l_offset + offs_m * stride_lse_m l = tl.full([BLOCK_M], value=0.0, dtype=tl.float32) # mask_m_offsets = start_m + tl.arange(0, BLOCK_M) # lse_mask = mask_m_offsets < causal_start_idx # softmax_lse = tl.where(lse_mask, 0.0, softmax_lse) l_ptrs_mask = offs_m < MAX_SEQLENS_Q tl.store(l_ptrs, l, mask=l_ptrs_mask) # TODO: Should dropout and return encoded softmax be handled here too? return # If MQA / GQA, set the K and V head offsets appropriately. GROUP_SIZE: tl.constexpr = HQ // HK if GROUP_SIZE != 1: off_h_k = off_h_q // GROUP_SIZE else: off_h_k = off_h_q n_extra_tokens = 0 # print("n_extra_tokens:", n_extra_tokens) # print("seqlen_k:", seqlen_k) # print("BLOCK_N:", BLOCK_N) # return if seqlen_k < BLOCK_N: n_extra_tokens = BLOCK_N - seqlen_k elif seqlen_k % BLOCK_N: n_extra_tokens = seqlen_k % BLOCK_N PADDED_HEAD: tl.constexpr = (ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL) # Compute pointers for all the tensors used in this kernel. q_offset = Q + off_z * stride_qz + off_h_q * stride_qh + cu_seqlens_q_start * stride_qm q_ptrs = q_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk k_offset = K + off_z * stride_kz + off_h_k * stride_kh + cu_seqlens_k_start * stride_kn k_ptrs = k_offset + offs_d[:, None] * stride_kk + offs_n[None, :] * stride_kn v_offset = V + off_z * stride_vz + off_h_k * stride_vh + cu_seqlens_k_start * stride_vk v_ptrs = v_offset + offs_n[:, None] * stride_vk + offs_d[None, :] * stride_vn if USE_BIAS: # Note: this might get large enough to overflow on some configs bias_offset = off_h_q * stride_bh bias_ptrs = bias + bias_offset + offs_m[:, None] * stride_bm + offs_n[None, :] * stride_bn else: bias_ptrs = None if USE_ALIBI: a_offset = off_z * stride_az + off_h_q * stride_ah alibi_slope = tl.load(alibi_slopes + a_offset) else: alibi_slope = None if RETURN_SCORES: scores_offset = scores + off_z * stride_sz + off_h_q * stride_sh + cu_seqlens_q_start * stride_sm score_ptrs = scores_offset + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn scores_scaled_shifted_offset = scores_scaled_shifted + off_z * stride_sz + off_h_q * stride_sh + cu_seqlens_q_start * stride_sm scores_scaled_shifted_ptrs = scores_scaled_shifted_offset + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn exp_scores_offset = exp_scores + off_z * stride_sz + off_h_q * stride_sh + cu_seqlens_q_start * stride_sm exp_scores_ptrs = exp_scores_offset + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn else: score_ptrs = None scores_scaled_shifted_ptrs = None exp_scores_ptrs = None if ENABLE_DROPOUT: off_hz = off_z * HQ + off_h_q batch_philox_offset = philox_offset_base + off_hz * seqlen_q * seqlen_k else: batch_philox_offset = 0 # initialize pointer to m and l m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32) l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # Q is loaded once at the beginning and shared by all N blocks. q_ptrs_mask = offs_m[:, None] < seqlen_q if PADDED_HEAD: q_ptrs_mask = q_ptrs_mask & (offs_d[None, :] < ACTUAL_BLOCK_DMODEL) q = tl.load(q_ptrs, mask=q_ptrs_mask, other=0.0) # Here we compute how many full and masked blocks we have. padded_block_k = n_extra_tokens != 0 is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0) if IS_CAUSAL: # There are always at least BLOCK_M // BLOCK_N masked blocks. # Additionally there might be one more due to dissimilar seqlens. masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn) else: # Padding on Q does not need to be masked in the FA loop. masked_blocks = padded_block_k # if IS_CAUSAL, not is_modulo_mn does not always result in an additional block. # In this case we might exceed n_blocks so pick the min. masked_blocks = min(masked_blocks, n_blocks) n_full_blocks = n_blocks - masked_blocks block_min = 0 block_max = n_blocks * BLOCK_N # Compute for full blocks. Here we set causal to false regardless of its actual # value because there is no masking. Similarly we do not need padding. if n_full_blocks > 0: block_max = (n_blocks - masked_blocks) * BLOCK_N acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, start_m, seqlen_k, seqlen_q, dropout_p, philox_seed, batch_philox_offset, exp_scores_ptrs, # _, _, offs_n_causal, masked_blocks, n_extra_tokens, _ block_min, block_max, 0, 0, 0, alibi_slope, score_ptrs, scores_scaled_shifted_ptrs, # IS_CAUSAL, .... False, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n, # _, MASK_STEPS, ... PRE_LOAD_V, False, ENABLE_DROPOUT, PADDED_HEAD, ACTUAL_BLOCK_DMODEL, SM_SCALE, USE_EXP2=USE_EXP2, RETURN_SCORES=RETURN_SCORES) block_min = block_max block_max = n_blocks * BLOCK_N tl.debug_barrier() # Remaining blocks, if any, are full / not masked. if (masked_blocks > 0): if IS_CAUSAL: offs_n_causal = offs_n + (seqlen_q - seqlen_k) else: offs_n_causal = 0 k_ptrs += n_full_blocks * BLOCK_N * stride_kn v_ptrs += n_full_blocks * BLOCK_N * stride_vk if USE_BIAS: bias_ptrs += n_full_blocks * BLOCK_N * stride_bn if RETURN_SCORES: score_ptrs += n_full_blocks * BLOCK_N scores_scaled_shifted_ptrs += n_full_blocks * BLOCK_N exp_scores_ptrs += n_full_blocks * BLOCK_N acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, start_m, seqlen_k, seqlen_q, dropout_p, philox_seed, batch_philox_offset, exp_scores_ptrs, block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, alibi_slope, score_ptrs, scores_scaled_shifted_ptrs, IS_CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n, # _, MASK_STEPS, ... PRE_LOAD_V, True, ENABLE_DROPOUT, PADDED_HEAD, ACTUAL_BLOCK_DMODEL, SM_SCALE, USE_EXP2=USE_EXP2, RETURN_SCORES=RETURN_SCORES) # epilogue # This helps the compiler do Newton Raphson on l_i vs on acc which is much larger. l_recip = 1 / l_i[:, None] acc = acc * l_recip if ENABLE_DROPOUT: acc = acc / (1 - dropout_p) # If seqlen_q > seqlen_k but the delta is not a multiple of BLOCK_M, # then we have one block with a row of all NaNs which come from computing # softmax over a row of all -infs (-inf - inf = NaN). We check for that here # and store 0s where there are NaNs as these rows should've been zeroed out. end_m_idx = (start_m + 1) * BLOCK_M start_m_idx = start_m * BLOCK_M causal_start_idx = seqlen_q - seqlen_k acc = acc.to(Out.type.element_ty) if IS_CAUSAL: if causal_start_idx > start_m_idx and causal_start_idx < end_m_idx: out_mask_boundary = tl.full((BLOCK_DMODEL, ), causal_start_idx, dtype=tl.int32) mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M) out_ptrs_mask = mask_m_offsets[:, None] >= out_mask_boundary[None, :] z = 0.0 acc = tl.where(out_ptrs_mask, acc, z.to(acc.type.element_ty)) # write back LSE(Log Sum Exponents), the log of the normalization constant l_offset = LSE + off_z * stride_lse_z + off_h_q * stride_lse_h + cu_seqlens_q_start * stride_lse_m l_ptrs = l_offset + offs_m * stride_lse_m if USE_EXP2: RCP_LN2: tl.constexpr = 1.4426950408889634 LN2: tl.constexpr = 0.6931471824645996 # compute log-sum-exp in base 2 units mi_base2 = m_i * RCP_LN2 softmax_lse = mi_base2 + tl.math.log2(l_i) # convert back to natural units softmax_lse *= LN2 else: softmax_lse = m_i + tl.math.log(l_i) if IS_CAUSAL: # zero out nans caused by -infs when doing causal lse_mask = (start_m_idx + tl.arange(0, BLOCK_M)) < causal_start_idx softmax_lse = tl.where(lse_mask, 0.0, softmax_lse) # If seqlen_q not multiple of BLOCK_M, we need to mask out the last few rows. # This is only true for the last M block. For others, overflow_size will be -ve overflow_size = end_m_idx - seqlen_q if overflow_size > 0: boundary = tl.full((BLOCK_M, ), BLOCK_M - overflow_size, dtype=tl.int32) l_ptrs_mask = tl.arange(0, BLOCK_M) < boundary tl.store(l_ptrs, softmax_lse, mask=l_ptrs_mask) # the log of the normalization constant else: tl.store(l_ptrs, softmax_lse) # the log of the normalization constant # write back O o_offset = Out + off_z * stride_oz + off_h_q * stride_oh + cu_seqlens_q_start * stride_om o_ptrs = o_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_on o_ptrs_mask = tl.full([BLOCK_M, BLOCK_DMODEL], 1, dtype=tl.int1) if overflow_size > 0: o_ptrs_mask = o_ptrs_mask & (offs_m[:, None] < seqlen_q) if PADDED_HEAD: o_ptrs_mask = o_ptrs_mask & (offs_d[None, :] < ACTUAL_BLOCK_DMODEL) tl.store(o_ptrs, acc.to(Out.dtype.element_ty), mask=o_ptrs_mask) def attention_prefill_forward_triton_impl( q, k, v, o, sm_scale, alibi_slopes, causal, bias, dropout_p, layout, cu_seqlens_q, cu_seqlens_k, max_seqlens_q, max_seqlens_k, return_scores, use_exp2): if DEBUG: print() print("attention_prefill_forward_triton_impl") print("q:", q, q.shape) print("k:", k, k.shape) print("v:", v, v.shape) print("o:", o, o.shape) print("sm_scale:", sm_scale) print("alibi_slopes:", alibi_slopes) print("causal:", causal) print("bias:", bias) print("dropout_p:", dropout_p) print("layout:", layout) print("cu_seqlens_q:", cu_seqlens_q) print("cu_seqlens_k:", cu_seqlens_k) print("max_seqlens_q:", max_seqlens_q) print("max_seqlens_k:", max_seqlens_k) print("return_scores:", return_scores) print("use_exp2:", use_exp2) # check if varlen is_varlen = layout == "thd" # NOTE: a large bias tensor leads to overflow during pointer arithmetic if (bias is not None): assert (bias.numel() < 2**31) batch, nheads_q, nheads_k, head_size, seqlen_q, seqlen_k = get_shape_from_layout(q, k, layout, cu_seqlens_q, cu_seqlens_k, max_seqlens_q, max_seqlens_k) q_strides, k_strides, v_strides, o_strides = get_strides_from_layout(q, k, v, o, layout) # Get closest power of 2 over or equal to 32. padded_d_model = 1 << (head_size - 1).bit_length() # Smallest head_dim supported is 16. If smaller, the tile in the # kernel is padded - there is no padding in memory for any dims. padded_d_model = max(padded_d_model, 16) grid = lambda META: (triton.cdiv(max_seqlens_q, META['BLOCK_M']), nheads_q, batch) if return_scores: scores = torch.zeros((batch, nheads_q, max_seqlens_q, max_seqlens_k), device=q.device, dtype=torch.float32) scores_scaled_shifted = torch.zeros((batch, nheads_q, max_seqlens_q, max_seqlens_k), device=q.device, dtype=torch.float32) scores_strides = (scores.stride(0), scores.stride(1), scores.stride(2), scores.stride(3)) else: scores = None scores_scaled_shifted = None scores_strides = (0, 0 , 0 , 0) # exp_scores is used to validate dropout behavior vs the PyTorch SDPA math backend reference. We zero this out # to give a consistent starting point and then populate it with the output of softmax with the sign bit set according # to the dropout mask. The resulting return allows this mask to be fed into the reference implementation for testing # only. This return holds no useful output aside from debugging. if return_scores: exp_scores = torch.zeros((batch, nheads_q, max_seqlens_q, max_seqlens_k), device=q.device, dtype=torch.float32) else: exp_scores = None # stores LSE the log of the normalization constant / sum of expoential score(unnormalzied probablities) if is_varlen: softmax_lse = torch.empty((q.shape[0], nheads_q), device=q.device, dtype=torch.float32) stride_lse_m, stride_lse_h = softmax_lse.stride() stride_lse_z = 0 else: softmax_lse = torch.empty((batch, nheads_q, max_seqlens_q), device=q.device, dtype=torch.float32) stride_lse_z, stride_lse_h, stride_lse_m = softmax_lse.stride() # Seed the RNG so we get reproducible results for testing. philox_seed = 0x1BF52 philox_offset = 0x1D4B42 if bias is not None: bias_strides = (bias.stride(0), bias.stride(1),bias.stride(2), bias.stride(3)) else: bias_strides = (0, 0, 0, 0) if alibi_slopes is not None: alibi_strides = (alibi_slopes.stride(0), alibi_slopes.stride(1)) else: alibi_strides = (0, 0) attn_fwd[grid](q, k, v, bias, sm_scale, softmax_lse, o, *q_strides, *k_strides, *v_strides, *o_strides, *bias_strides, *alibi_strides, *scores_strides, stride_lse_z, stride_lse_h, stride_lse_m, cu_seqlens_q, cu_seqlens_k, dropout_p=dropout_p, philox_seed=philox_seed, philox_offset_base=philox_offset, scores=scores, scores_scaled_shifted=scores_scaled_shifted, exp_scores=exp_scores, alibi_slopes=alibi_slopes, HQ=nheads_q, HK=nheads_k, ACTUAL_BLOCK_DMODEL=head_size, MAX_SEQLENS_Q=max_seqlens_q, MAX_SEQLENS_K=max_seqlens_k, IS_CAUSAL=causal, VARLEN=is_varlen, BLOCK_DMODEL=padded_d_model, USE_BIAS=False if bias is None else True, USE_ALIBI=False if alibi_slopes is None else True, ENABLE_DROPOUT=dropout_p > 0.0, USE_EXP2=use_exp2, RETURN_SCORES=return_scores) return o, softmax_lse, exp_scores, grid, head_size, philox_seed, philox_offset, scores, scores_scaled_shifted