123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- import re
- import torch
- import pytest
- from transformers import GPTJConfig, AutoTokenizer
- from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
- from flash_attn.models.gpt import GPTLMHeadModel
- from flash_attn.models.gptj import remap_state_dict_hf_gptj, gptj_config_to_gpt2_config
- from flash_attn.utils.pretrained import state_dict_from_pretrained
- @pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
- def test_gptj_state_dict(model_name):
- config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
- pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config)
- model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow
- state_dict = model.state_dict()
- rotary_inv_freq_keys = {f'transformer.layers.{l}.mixer.rotary_emb.inv_freq'
- for l in range(config.n_layer)}
- assert state_dict.keys() == pretrained_state_dict.keys() | rotary_inv_freq_keys
- for k in state_dict.keys() - rotary_inv_freq_keys:
- assert state_dict[k].shape == pretrained_state_dict[k].shape
- @pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
- def test_gptj_optimized(model_name):
- """Check that our implementation of GPT-J (with all optimizations enabled) matches the
- HF implementation: the output of our forward pass in fp16 should be around the same as the HF
- forward pass in fp16, when compared to the HF forward pass in fp32.
- """
- dtype = torch.float16
- device = 'cuda'
- config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
- config.use_flash_attn = False # FlashAttention doesn't support hdim 256 yet
- config.fused_bias_fc = True
- config.fused_mlp = True
- config.fused_dropout_add_ln = True
- config.residual_in_fp32 = True
- model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
- model.eval()
- torch.manual_seed(0)
- batch_size = 2
- max_seqlen = 256
- seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
- input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
- device=device)
- with torch.no_grad():
- out = model.transformer(input_ids)
- logits = model(input_ids).logits
- del model
- # Without device_map, the model is loaded on the CPU, which is very slow
- model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
- model_ref.eval()
- with torch.no_grad():
- out_ref = model_ref.transformer(input_ids).last_hidden_state
- logits_ref = model_ref(input_ids).logits
- del model_ref
- model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
- device_map={"": device})
- model_hf.eval()
- out_hf = model_hf.transformer(input_ids).last_hidden_state
- logits_hf = model_hf(input_ids).logits
- del model_hf
- print(f'Output max diff: {(out - out_ref).abs().max().item()}')
- print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
- print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
- print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
- assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
- print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
- print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
- print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
- print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
- assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
|