import re import torch import pytest from transformers import GPTJConfig, AutoTokenizer from transformers.models.gptj.modeling_gptj import GPTJForCausalLM from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.gptj import remap_state_dict_hf_gptj, gptj_config_to_gpt2_config from flash_attn.utils.pretrained import state_dict_from_pretrained @pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"]) def test_gptj_state_dict(model_name): config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name)) pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow state_dict = model.state_dict() rotary_inv_freq_keys = {f'transformer.layers.{l}.mixer.rotary_emb.inv_freq' for l in range(config.n_layer)} assert state_dict.keys() == pretrained_state_dict.keys() | rotary_inv_freq_keys for k in state_dict.keys() - rotary_inv_freq_keys: assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"]) def test_gptj_optimized(model_name): """Check that our implementation of GPT-J (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 device = 'cuda' config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name)) config.use_flash_attn = False # FlashAttention doesn't support hdim 256 yet config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True config.residual_in_fp32 = True model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device) with torch.no_grad(): out = model.transformer(input_ids) logits = model(input_ids).logits del model # Without device_map, the model is loaded on the CPU, which is very slow model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device}) model_ref.eval() with torch.no_grad(): out_ref = model_ref.transformer(input_ids).last_hidden_state logits_ref = model_ref(input_ids).logits del model_ref model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype, device_map={"": device}) model_hf.eval() out_hf = model_hf.transformer(input_ids).last_hidden_state logits_hf = model_hf(input_ids).logits del model_hf print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}') assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}') print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}') assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()