1
0

config.yaml 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # @package _global_
  2. # specify here default training configuration
  3. defaults:
  4. - _self_
  5. - trainer: default
  6. - optimizer: adamw
  7. - scheduler: null
  8. - task: sequence-model
  9. - model: null
  10. - datamodule: null
  11. - callbacks: default # set this to null if you don't want to use callbacks
  12. - metrics: null
  13. - logger: null # set logger here or use command line (e.g. `python run.py logger=wandb`)
  14. - mode: default
  15. - experiment: null
  16. - hparams_search: null
  17. # enable color logging
  18. - override hydra/hydra_logging: colorlog
  19. - override hydra/job_logging: colorlog
  20. # path to original working directory
  21. # hydra hijacks working directory by changing it to the current log directory,
  22. # so it's useful to have this path as a special variable
  23. # https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory
  24. work_dir: ${hydra:runtime.cwd}
  25. # path to folder with data
  26. data_dir: ${work_dir}/data/
  27. # pretty print config at the start of the run using Rich library
  28. print_config: True
  29. # disable python warnings if they annoy you
  30. ignore_warnings: True
  31. # check performance on test set, using the best model achieved during training
  32. # lightning chooses best model based on metric specified in checkpoint callback
  33. test_after_training: True
  34. resume: False
  35. # seed for random number generators in pytorch, numpy and python.random
  36. seed: null
  37. # name of the run, accessed by loggers
  38. name: null