1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- # @package _global_
- # specify here default training configuration
- defaults:
- - _self_
- - trainer: default
- - optimizer: adamw
- - scheduler: null
- - task: sequence-model
- - model: null
- - datamodule: null
- - callbacks: default # set this to null if you don't want to use callbacks
- - metrics: null
- - logger: null # set logger here or use command line (e.g. `python run.py logger=wandb`)
- - mode: default
- - experiment: null
- - hparams_search: null
- # enable color logging
- - override hydra/hydra_logging: colorlog
- - override hydra/job_logging: colorlog
- # path to original working directory
- # hydra hijacks working directory by changing it to the current log directory,
- # so it's useful to have this path as a special variable
- # https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory
- work_dir: ${hydra:runtime.cwd}
- # path to folder with data
- data_dir: ${work_dir}/data/
- # pretty print config at the start of the run using Rich library
- print_config: True
- # disable python warnings if they annoy you
- ignore_warnings: True
- # check performance on test set, using the best model achieved during training
- # lightning chooses best model based on metric specified in checkpoint callback
- test_after_training: True
- resume: False
- # seed for random number generators in pytorch, numpy and python.random
- seed: null
- # name of the run, accessed by loggers
- name: null
|