Revīziju vēsture

Autors SHA1 Ziņojums Datums
  Tri Dao f86e3dd919 [CI] Use MAX_JOBS=1 with nvcc 12.3, don't need OLD_GENERATOR_PATH 1 mēnesi atpakaļ
  Tri Dao 9375ac9322 [CI] Don't include <ATen/cuda/CUDAGraphsUtils.cuh> 1 mēnesi atpakaļ
  Tri Dao 073afd5931 [CI] Use torch 2.6.0.dev20241001, reduce torch #include 1 mēnesi atpakaļ
  Michael Melesse b518517cb8 [AMD] Triton Backend for ROCm (#1203) 1 mēnesi atpakaļ
  Tri Dao 241c682c9f [CI] Switch back to CUDA 12.4 2 mēneši atpakaļ
  Tri Dao 6ffeb572b1 [CI] Still use CUDA 12.3 but pull the right pytorch version 2 mēneši atpakaļ
  Ethan Steinberg 42f2b8be34 Use CUDA 12.4 in the build system (#1326) 2 mēneši atpakaļ
  rocking e2182cc21d Support page kvcache in AMD ROCm (#1198) 4 mēneši atpakaļ
  juejuezi e371bea04f feat: change minimal supported CUDA version to 11.7 (#1206) 4 mēneši atpakaļ
  Tri Dao 65f723bb9a Split bwd into more .cu files to speed up compilation 5 mēneši atpakaļ
  Tri Dao 751c762c9c Don't specialize for hdim 224 to speed up compilation 5 mēneši atpakaļ
  rocking d8f104e97a Support AMD ROCm on FlashAttention 2 (#1010) 5 mēneši atpakaļ
  Tri Dao 844912dca0 [CI] Switch from CUDA 12.2 to 12.3 6 mēneši atpakaļ
  Tri Dao 908511b2b6 Split into more .cu files to speed up compilation 6 mēneši atpakaļ
  Tri Dao beb2bf2a32 Drop support for pytorch 1.12, 1.13, and python 3.7 6 mēneši atpakaļ
  Nicolas Patry 8f873cc6ac Implement softcapping. (#1025) 6 mēneši atpakaļ
  Corey James Levinson beb8b8ba9f add exception to Timeout Error (#963) 7 mēneši atpakaļ
  Wei Ji 9c0e9ee86d Move packaging and ninja from install_requires to setup_requires (#937) 8 mēneši atpakaļ
  Tri Dao 2aea958f89 [CI] Compile with torch 2.3.0.dev20240207 9 mēneši atpakaļ
  Arvind Sundararajan 26c9e82743 Support ARM builds (#757) 10 mēneši atpakaļ
  Chirag Jain 50896ec574 Make nvcc threads configurable via environment variable (#885) 10 mēneši atpakaļ
  Qubitium f45bbb4c94 Optimize compile to 1: avoid oom 2: minimize swap usage 3: avoid threads starvation when letting ninja decide how many workers to spawn or manual MAX_JOBS "guesses". Logic is to take the min value of MAX_JOBS auto-calculated by two metrics: 1: cpu cores 2: free memory. This should allow flash-attn to compile close to the most efficient manner under any consumer/server env. (#832) 11 mēneši atpakaļ
  Tri Dao d4a7c8ffbb [CI] Only compile for CUDA 11.8 & 12.2, MAX_JOBS=2,add torch-nightly 1 gadu atpakaļ
  Tri Dao 5e525a8dc8 [CI] Use official Pytorch 2.1, add CUDA 11.8 for Pytorch 2.1 1 gadu atpakaļ
  Tri Dao 1879e089c7 Reduce number of templates for headdim > 128 1 gadu atpakaļ
  Tri Dao bff3147175 Re-enable compilation for Hopper 1 gadu atpakaļ
  Tri Dao dfe29f5e2b [Gen] Don't use ft_attention, use flash_attn_with_kvcache instead 1 gadu atpakaļ
  Federico Berto fa3ddcbaaa [Minor] add nvcc note on bare_metal_version `RuntimeError` (#552) 1 gadu atpakaļ
  Tri Dao 799f56fa90 Don't compile for Pytorch 2.1 on CUDA 12.1 due to nvcc segfaults 1 gadu atpakaļ
  Tri Dao bb9beb3645 Remove some unused headers 1 gadu atpakaļ