|
@@ -0,0 +1,754 @@
|
|
|
+import math
|
|
|
+
|
|
|
+import pytest
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+from einops import rearrange, repeat
|
|
|
+from flash_attn import (
|
|
|
+ flash_attn_func,
|
|
|
+ flash_attn_kvpacked_func,
|
|
|
+ flash_attn_qkvpacked_func,
|
|
|
+ flash_attn_varlen_func,
|
|
|
+ flash_attn_varlen_kvpacked_func,
|
|
|
+ flash_attn_varlen_qkvpacked_func,
|
|
|
+)
|
|
|
+
|
|
|
+from test_flash_attn import (
|
|
|
+ attn_bias_from_alibi_slopes,
|
|
|
+ convert_flash_attn_S_to_softmax,
|
|
|
+ generate_qkv,
|
|
|
+ generate_random_padding_mask,
|
|
|
+ attention_ref,
|
|
|
+ attention_kvpacked_ref,
|
|
|
+ attention_qkvpacked_ref,
|
|
|
+)
|
|
|
+
|
|
|
+def is_bwd_hdim_supported(d):
|
|
|
+ return d <= 128 and d % 2 == 0
|
|
|
+
|
|
|
+
|
|
|
+def ck_randval_to_dropout_mask(randval, p):
|
|
|
+ # If p = 0.3, randval in 255 * (0.7, 1.0] will be dropout
|
|
|
+ # randval in 255 * [0, 0.7] will be kept
|
|
|
+ # If return dropout_mask >=0, value will be kept
|
|
|
+ return torch.floor(255.0 * (1 - p) - randval)
|
|
|
+
|
|
|
+
|
|
|
+def pad_rearrange_dropout_mask_hts_to_bhss(S_dmask, cu_seqlens_q, seqlen_q_rounded, seqlen_k_rounded):
|
|
|
+ """ pad + rearrange [nheads, total_q, max_seqlen_k] into [b, nheads, seqlen_q_rounded, seqlen_k_rounded]
|
|
|
+ Arguments:
|
|
|
+ S_dmask: (nheads, total_q, max_seqlen_k)
|
|
|
+ cu_seqlens_q: (b + 1)
|
|
|
+ Output:
|
|
|
+ S_dmask: (b, nheads, seqlen_q_rounded, seqlen_k_rounded)
|
|
|
+ """
|
|
|
+ batch_size = cu_seqlens_q.numel() - 1
|
|
|
+ seqlens_q = torch.roll(cu_seqlens_q, shifts = -1) - cu_seqlens_q
|
|
|
+ seqlens_q = seqlens_q[0:batch_size].tolist()
|
|
|
+ S_dmask = torch.split(S_dmask, seqlens_q, dim=1)
|
|
|
+ # [(nheads, seqlen_q0, max_seqlen_k), (nheads, seqlen_q1, max_seqlen_k), ..., (nheads, seqlen_qb, max_seqlen_k)]
|
|
|
+ masks = ()
|
|
|
+ for mask in S_dmask:
|
|
|
+ # (nheads, seqlen_qi, max_seqlen_k) -> (nheads, seqlen_q_rounded, seqlen_k_rounded)
|
|
|
+ mask = F.pad(mask, (0, seqlen_k_rounded - mask.shape[2], 0, seqlen_q_rounded - mask.shape[1], 0, 0)).unsqueeze(1)
|
|
|
+ masks = masks + (mask, )
|
|
|
+ S_dmask = torch.cat(masks, dim=1)
|
|
|
+
|
|
|
+ S_dmask = S_dmask.transpose(0, 1)
|
|
|
+ return S_dmask
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
|
+@pytest.mark.parametrize("deterministic", [False])
|
|
|
+@pytest.mark.parametrize("alibi", [False, True])
|
|
|
+@pytest.mark.parametrize("local", [False, True])
|
|
|
+@pytest.mark.parametrize("causal", [False, True])
|
|
|
+@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
|
|
|
+@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
|
|
|
+@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
|
|
|
+def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
|
|
|
+ if d > 256:
|
|
|
+ pytest.skip()
|
|
|
+
|
|
|
+ device = "cuda"
|
|
|
+ # set seed
|
|
|
+ torch.random.manual_seed(0)
|
|
|
+ batch_size = 4
|
|
|
+ nheads = 9
|
|
|
+ window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
|
|
|
+
|
|
|
+ qkv = torch.randn(
|
|
|
+ batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+
|
|
|
+ if alibi:
|
|
|
+ alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
|
|
|
+ attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
|
|
|
+ else:
|
|
|
+ alibi_slopes, attn_bias = None, None
|
|
|
+ out, lse, S_dmask = flash_attn_qkvpacked_func(
|
|
|
+ qkv,
|
|
|
+ dropout_p,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ alibi_slopes=alibi_slopes,
|
|
|
+ deterministic=deterministic,
|
|
|
+ return_attn_probs=True,
|
|
|
+ )
|
|
|
+ if dropout_p > 0.0:
|
|
|
+ # TODO - move to c++ mha_varlen_fwd()
|
|
|
+ S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
|
|
|
+ S_dmask_converted = convert_flash_attn_S_to_softmax(
|
|
|
+ S_dmask,
|
|
|
+ seqlen,
|
|
|
+ seqlen,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ d,
|
|
|
+ dropout_p > 0.0,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ dropout_mask = S_dmask_converted >= 0
|
|
|
+ # CK does not return P. Hence, we don't test the attn here.
|
|
|
+ else:
|
|
|
+ dropout_mask = None
|
|
|
+
|
|
|
+ out_ref, attn_ref = attention_qkvpacked_ref(
|
|
|
+ qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
|
|
|
+ )
|
|
|
+ out_pt, attn_pt = attention_qkvpacked_ref(
|
|
|
+ qkv,
|
|
|
+ None,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
+ print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
+ print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
|
+ print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # Check that FlashAttention's numerical error is at most twice the numerical error
|
|
|
+ # of a Pytorch implementation.
|
|
|
+ assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
|
|
|
+
|
|
|
+ g = torch.randn_like(out)
|
|
|
+ if is_bwd_hdim_supported(d):
|
|
|
+ (dqkv,) = torch.autograd.grad(out, qkv, g)
|
|
|
+ (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
|
|
|
+ (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
|
|
|
+ print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
|
|
|
+ print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
|
|
|
+ print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
|
|
|
+ print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
|
|
|
+ print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
|
|
|
+ print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
|
|
|
+ print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
|
|
|
+ print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # TODO - use 10 times to check, wait for ck to change dq type to f32
|
|
|
+ assert (dqkv - dqkv_ref).abs().max().item() <= 10 * (dqkv_pt - dqkv_ref).abs().max().item()
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
|
+@pytest.mark.parametrize("deterministic", [False])
|
|
|
+@pytest.mark.parametrize("alibi", [False, True])
|
|
|
+@pytest.mark.parametrize("local", [False, True])
|
|
|
+@pytest.mark.parametrize("causal", [False, True])
|
|
|
+@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
|
|
|
+@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
|
|
|
+@pytest.mark.parametrize("dropout_p", [0, 0.17])
|
|
|
+def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
|
|
|
+ if d > 256:
|
|
|
+ pytest.skip()
|
|
|
+
|
|
|
+ device = "cuda"
|
|
|
+ # set seed
|
|
|
+ torch.random.manual_seed(0)
|
|
|
+ batch_size = 5
|
|
|
+ nheads = 6
|
|
|
+ window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
|
|
|
+ qkv = torch.randn(
|
|
|
+ batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+
|
|
|
+ key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
|
|
|
+ # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
|
|
|
+ if alibi:
|
|
|
+ alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
|
|
|
+ attn_bias = attn_bias_from_alibi_slopes(
|
|
|
+ alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ alibi_slopes, attn_bias = None, None
|
|
|
+
|
|
|
+ qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
|
|
|
+ *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
|
|
|
+ )
|
|
|
+
|
|
|
+ out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
|
|
|
+ qkv_unpad,
|
|
|
+ cu_seqlens,
|
|
|
+ max_seqlen,
|
|
|
+ dropout_p,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ alibi_slopes=alibi_slopes,
|
|
|
+ deterministic=deterministic,
|
|
|
+ return_attn_probs=True,
|
|
|
+ )
|
|
|
+ out = output_pad_fn(out_unpad)
|
|
|
+ if dropout_p > 0.0:
|
|
|
+ # TODO - move to c++ mha_varlen_fwd()
|
|
|
+ S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
|
|
|
+ S_dmask = pad_rearrange_dropout_mask_hts_to_bhss(S_dmask, cu_seqlens, seqlen, seqlen)
|
|
|
+
|
|
|
+ S_dmask_converted = convert_flash_attn_S_to_softmax(
|
|
|
+ S_dmask,
|
|
|
+ seqlen,
|
|
|
+ seqlen,
|
|
|
+ key_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ d,
|
|
|
+ dropout_p > 0.0,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+
|
|
|
+ dropout_mask = S_dmask_converted >= 0
|
|
|
+ # CK does not return P. Hence, we don't test the attn here.
|
|
|
+ else:
|
|
|
+ dropout_mask = None
|
|
|
+
|
|
|
+ out_ref, attn_ref = attention_qkvpacked_ref(
|
|
|
+ qkv,
|
|
|
+ key_padding_mask,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ out_pt, attn_pt = attention_qkvpacked_ref(
|
|
|
+ qkv,
|
|
|
+ key_padding_mask,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ )
|
|
|
+ print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
+ print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
+ print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
|
+ print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # Check that FlashAttention's numerical error is at most twice the numerical error
|
|
|
+ # of a Pytorch implementation.
|
|
|
+ assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
|
|
|
+
|
|
|
+ g = torch.randn_like(out)
|
|
|
+ if is_bwd_hdim_supported(d):
|
|
|
+ (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
|
|
|
+ dqkv = dqkv_pad_fn(dqkv_unpad)
|
|
|
+ (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
|
|
|
+ (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
|
|
|
+ print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
|
|
|
+ print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
|
|
|
+ print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
|
|
|
+ print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
|
|
|
+ print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
|
|
|
+ print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
|
|
|
+ print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
|
|
|
+ print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # TODO - use 10 times to check, wait for ck to change dq type to f32
|
|
|
+ assert (dqkv - dqkv_ref).abs().max().item() <= 10 * (dqkv_pt - dqkv_ref).abs().max().item()
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("kvpacked", [True, False])
|
|
|
+@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
|
+@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
|
+@pytest.mark.parametrize("deterministic", [False])
|
|
|
+@pytest.mark.parametrize("alibi", [False, True])
|
|
|
+@pytest.mark.parametrize("local", [False, True])
|
|
|
+@pytest.mark.parametrize("causal", [False, True])
|
|
|
+@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "seqlen_q,seqlen_k",
|
|
|
+ [
|
|
|
+ (113, 203),
|
|
|
+ (128, 217),
|
|
|
+ (113, 211),
|
|
|
+ (108, 256),
|
|
|
+ (256, 512),
|
|
|
+ (512, 256),
|
|
|
+ (1024, 1024),
|
|
|
+ (1023, 1024),
|
|
|
+ (1024, 1023),
|
|
|
+ (2048, 2048),
|
|
|
+ ],
|
|
|
+)
|
|
|
+@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
|
|
|
+def test_flash_attn_output(
|
|
|
+ seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
|
|
|
+):
|
|
|
+ device = "cuda"
|
|
|
+ # set seed
|
|
|
+ torch.random.manual_seed(0)
|
|
|
+ batch_size = 4
|
|
|
+ nheads = 9
|
|
|
+ nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
|
|
|
+ assert nheads % nheads_k == 0
|
|
|
+ window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
|
|
|
+ q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
|
|
|
+ if kvpacked:
|
|
|
+ kv = torch.randn(
|
|
|
+ batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ k = torch.randn(
|
|
|
+ batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+ v = torch.randn(
|
|
|
+ batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+ if alibi:
|
|
|
+ alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
|
|
|
+ attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
|
|
|
+ else:
|
|
|
+ alibi_slopes, attn_bias = None, None
|
|
|
+
|
|
|
+ if kvpacked:
|
|
|
+ out, lse, S_dmask = flash_attn_kvpacked_func(
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ dropout_p,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ alibi_slopes=alibi_slopes,
|
|
|
+ deterministic=deterministic,
|
|
|
+ return_attn_probs=True,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ out, lse, S_dmask = flash_attn_func(
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ dropout_p,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ alibi_slopes=alibi_slopes,
|
|
|
+ deterministic=deterministic,
|
|
|
+ return_attn_probs=True,
|
|
|
+ )
|
|
|
+ if dropout_p > 0.0:
|
|
|
+ # TODO - move to c++ mha_varlen_fwd()
|
|
|
+ S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
|
|
|
+ S_dmask_converted = convert_flash_attn_S_to_softmax(
|
|
|
+ S_dmask,
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ d,
|
|
|
+ dropout_p > 0.0,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ dropout_mask = S_dmask_converted >= 0
|
|
|
+ if kvpacked:
|
|
|
+ kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
|
|
|
+ k_rep, v_rep = kv_rep.unbind(dim=2)
|
|
|
+ else:
|
|
|
+ k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
|
+ v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
|
+ # CK does not return P. Hence, we don't test the attn here.
|
|
|
+ else:
|
|
|
+ dropout_mask = None
|
|
|
+
|
|
|
+ if kvpacked:
|
|
|
+ out_ref, attn_ref = attention_kvpacked_ref(
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ out_pt, attn_pt = attention_kvpacked_ref(
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ out_ref, attn_ref = attention_ref(
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ out_pt, attn_pt = attention_ref(
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ None,
|
|
|
+ None,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
+ print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
+ print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
|
+ print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # Check that FlashAttention's numerical error is at most twice the numerical error
|
|
|
+ # of a Pytorch implementation.
|
|
|
+ assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
|
|
|
+
|
|
|
+ g = torch.randn_like(out)
|
|
|
+ if is_bwd_hdim_supported(d):
|
|
|
+ if kvpacked:
|
|
|
+ (
|
|
|
+ dq,
|
|
|
+ dkv,
|
|
|
+ ) = torch.autograd.grad(out, (q, kv), g)
|
|
|
+ dk, dv = dkv.unbind(2)
|
|
|
+ (
|
|
|
+ dq_ref,
|
|
|
+ dkv_ref,
|
|
|
+ ) = torch.autograd.grad(out_ref, (q, kv), g)
|
|
|
+ dk_ref, dv_ref = dkv_ref.unbind(2)
|
|
|
+ (
|
|
|
+ dq_pt,
|
|
|
+ dkv_pt,
|
|
|
+ ) = torch.autograd.grad(out_pt, (q, kv), g)
|
|
|
+ dk_pt, dv_pt = dkv_pt.unbind(2)
|
|
|
+ else:
|
|
|
+ (
|
|
|
+ dq,
|
|
|
+ dk,
|
|
|
+ dv,
|
|
|
+ ) = torch.autograd.grad(out, (q, k, v), g)
|
|
|
+ (
|
|
|
+ dq_ref,
|
|
|
+ dk_ref,
|
|
|
+ dv_ref,
|
|
|
+ ) = torch.autograd.grad(out_ref, (q, k, v), g)
|
|
|
+ (
|
|
|
+ dq_pt,
|
|
|
+ dk_pt,
|
|
|
+ dv_pt,
|
|
|
+ ) = torch.autograd.grad(out_pt, (q, k, v), g)
|
|
|
+ print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
|
|
|
+ print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
|
|
|
+ print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
|
|
|
+ print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
|
|
|
+ print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
|
|
|
+ print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
|
|
|
+ print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
|
|
|
+ print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
|
|
|
+ print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
|
|
|
+ print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
|
|
|
+ print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
|
|
|
+ print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # TODO - use 10 times to check, wait for ck to change dq type to f32
|
|
|
+ assert (dq - dq_ref).abs().max().item() <= 10 * (dq_pt - dq_ref).abs().max().item()
|
|
|
+ assert (dk - dk_ref).abs().max().item() <= 10 * (dk_pt - dk_ref).abs().max().item()
|
|
|
+ assert (dv - dv_ref).abs().max().item() <= 10 * (dv_pt - dv_ref).abs().max().item()
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("kvpacked", [True, False])
|
|
|
+@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
|
+@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
|
+@pytest.mark.parametrize("deterministic", [False, True])
|
|
|
+@pytest.mark.parametrize("alibi", [False, True])
|
|
|
+@pytest.mark.parametrize("local", [False, True])
|
|
|
+@pytest.mark.parametrize("causal", [False, True])
|
|
|
+@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "seqlen_q,seqlen_k",
|
|
|
+ [
|
|
|
+ (1, 147),
|
|
|
+ (113, 203),
|
|
|
+ (128, 217),
|
|
|
+ (113, 211),
|
|
|
+ (108, 256),
|
|
|
+ (256, 512),
|
|
|
+ (512, 256),
|
|
|
+ (1024, 1024),
|
|
|
+ (1023, 1024),
|
|
|
+ (1024, 1023),
|
|
|
+ (2048, 2048),
|
|
|
+ ],
|
|
|
+)
|
|
|
+@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
|
|
|
+def test_flash_attn_varlen_output(
|
|
|
+ seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
|
|
|
+):
|
|
|
+ device = "cuda"
|
|
|
+ # set seed
|
|
|
+ torch.random.manual_seed(0)
|
|
|
+ batch_size = 4
|
|
|
+ nheads = 9
|
|
|
+ nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
|
|
|
+ assert nheads % nheads_k == 0
|
|
|
+ window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
|
|
|
+ q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
|
|
|
+ if kvpacked:
|
|
|
+ kv = torch.randn(
|
|
|
+ batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ k = torch.randn(
|
|
|
+ batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+ v = torch.randn(
|
|
|
+ batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
|
|
|
+ )
|
|
|
+
|
|
|
+ query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
|
|
|
+ key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
|
|
|
+ # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
|
|
|
+ if alibi:
|
|
|
+ alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
|
|
|
+ attn_bias = attn_bias_from_alibi_slopes(
|
|
|
+ alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ alibi_slopes, attn_bias = None, None
|
|
|
+
|
|
|
+ if kvpacked:
|
|
|
+ (
|
|
|
+ q_unpad,
|
|
|
+ kv_unpad,
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ output_pad_fn,
|
|
|
+ dq_pad_fn,
|
|
|
+ dkv_pad_fn,
|
|
|
+ ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
|
|
|
+ out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
|
|
|
+ q_unpad,
|
|
|
+ kv_unpad,
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ dropout_p,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ alibi_slopes=alibi_slopes,
|
|
|
+ deterministic=deterministic,
|
|
|
+ return_attn_probs=True,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ (
|
|
|
+ q_unpad,
|
|
|
+ k_unpad,
|
|
|
+ v_unpad,
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ output_pad_fn,
|
|
|
+ dq_pad_fn,
|
|
|
+ dk_pad_fn,
|
|
|
+ ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
|
|
|
+ out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
|
|
|
+ q_unpad,
|
|
|
+ k_unpad,
|
|
|
+ v_unpad,
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ dropout_p,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ alibi_slopes=alibi_slopes,
|
|
|
+ deterministic=deterministic,
|
|
|
+ return_attn_probs=True,
|
|
|
+ )
|
|
|
+ out = output_pad_fn(out_unpad)
|
|
|
+ if dropout_p > 0.0:
|
|
|
+ # TODO - move to c++ mha_varlen_fwd()
|
|
|
+ S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
|
|
|
+ S_dmask = pad_rearrange_dropout_mask_hts_to_bhss(S_dmask, cu_seqlens_q, seqlen_q, seqlen_k)
|
|
|
+ S_dmask_converted = convert_flash_attn_S_to_softmax(
|
|
|
+ S_dmask,
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ d,
|
|
|
+ dropout_p > 0.0,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ dropout_mask = S_dmask_converted >= 0
|
|
|
+ if kvpacked:
|
|
|
+ kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
|
|
|
+ k_rep, v_rep = kv_rep.unbind(dim=2)
|
|
|
+ else:
|
|
|
+ k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
|
+ v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
|
+ # CK does not return P. Hence, we don't test the attn here.
|
|
|
+ else:
|
|
|
+ dropout_mask = None
|
|
|
+
|
|
|
+ if kvpacked:
|
|
|
+ out_ref, attn_ref = attention_kvpacked_ref(
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ out_pt, attn_pt = attention_kvpacked_ref(
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ out_ref, attn_ref = attention_ref(
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ )
|
|
|
+ out_pt, attn_pt = attention_ref(
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ attn_bias,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
+ print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
+ print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
|
+ print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # Check that FlashAttention's numerical error is at most 4 times the numerical error
|
|
|
+ # of a Pytorch implementation.
|
|
|
+ assert (out - out_ref).abs().max().item() <= 4 * (out_pt - out_ref).abs().max().item()
|
|
|
+
|
|
|
+ g = torch.randn_like(out)
|
|
|
+ if is_bwd_hdim_supported(d):
|
|
|
+ if kvpacked:
|
|
|
+ (
|
|
|
+ dq_unpad,
|
|
|
+ dkv_unpad,
|
|
|
+ ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
|
|
|
+ dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
|
|
|
+ (
|
|
|
+ dq_ref,
|
|
|
+ dkv_ref,
|
|
|
+ ) = torch.autograd.grad(out_ref, (q, kv), g)
|
|
|
+ dk_ref, dv_ref = dkv_ref.unbind(2)
|
|
|
+ (
|
|
|
+ dq_pt,
|
|
|
+ dkv_pt,
|
|
|
+ ) = torch.autograd.grad(out_pt, (q, kv), g)
|
|
|
+ dk_pt, dv_pt = dkv_pt.unbind(2)
|
|
|
+ else:
|
|
|
+ (
|
|
|
+ dq_unpad,
|
|
|
+ dk_unpad,
|
|
|
+ dv_unpad,
|
|
|
+ ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
|
|
|
+ dk = dk_pad_fn(dk_unpad)
|
|
|
+ dv = dk_pad_fn(dv_unpad)
|
|
|
+ (
|
|
|
+ dq_ref,
|
|
|
+ dk_ref,
|
|
|
+ dv_ref,
|
|
|
+ ) = torch.autograd.grad(out_ref, (q, k, v), g)
|
|
|
+ (
|
|
|
+ dq_pt,
|
|
|
+ dk_pt,
|
|
|
+ dv_pt,
|
|
|
+ ) = torch.autograd.grad(out_pt, (q, k, v), g)
|
|
|
+ dq = dq_pad_fn(dq_unpad)
|
|
|
+ print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
|
|
|
+ print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
|
|
|
+ print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
|
|
|
+ print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
|
|
|
+ print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
|
|
|
+ print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
|
|
|
+ print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
|
|
|
+ print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
|
|
|
+ print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
|
|
|
+ print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
|
|
|
+ print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
|
|
|
+ print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # TODO - use 10 times to check, wait for ck to change dq type to f32
|
|
|
+ assert (dq - dq_ref).abs().max().item() <= 10 * (dq_pt - dq_ref).abs().max().item()
|
|
|
+ assert (dk - dk_ref).abs().max().item() <= 10 * (dk_pt - dk_ref).abs().max().item()
|
|
|
+ assert (dv - dv_ref).abs().max().item() <= 10 * (dv_pt - dv_ref).abs().max().item()
|