123456789101112131415161718192021222324252627282930313233343536373839404142 |
- import pyaudio
- import numpy as np
- import matplotlib.pyplot as plt
- import pyaudio
- import wave
- import sys
- CHUNK = 1024
- np.set_printoptions(suppress=True) # don't use scientific notation
- CHUNK = 4096 # number of data points to read at a time
- RATE = 44100 # time resolution of the recording device (Hz)
- p=pyaudio.PyAudio() # start the PyAudio class
- stream=p.open(format=pyaudio.paInt16,channels=1,rate=RATE,input=True,
- frames_per_buffer=CHUNK) #uses default input device
- # create a numpy array holding a single read of audio data
- for i in range(300): #to it a few times just to see
- data = np.fromstring(stream.read(CHUNK),dtype=np.int16)
- data = data * np.hanning(len(data)) # smooth the FFT by windowing data
- fft = abs(np.fft.fft(data).real)
- fft = fft[:int(len(fft)/2)] # keep only first half
- freq = np.fft.fftfreq(CHUNK,1.0/RATE)
- freq = freq[:int(len(freq)/2)] # keep only first half
- freqPeak = freq[np.where(fft==np.max(fft))[0][0]]+1
- print("peak frequency: %d Hz"%freqPeak)
- # uncomment this if you want to see what the freq vs FFT looks like
- plt.plot(freq,fft)
- plt.axis([0,4000,None,None])
- plt.show()
- plt.close()
- # close the stream gracefully
- stream.stop_stream()
- stream.close()
- p.terminate()
|