import pyaudio import numpy as np import matplotlib.pyplot as plt import pyaudio import wave import sys CHUNK = 1024 np.set_printoptions(suppress=True) # don't use scientific notation CHUNK = 4096 # number of data points to read at a time RATE = 44100 # time resolution of the recording device (Hz) p=pyaudio.PyAudio() # start the PyAudio class stream=p.open(format=pyaudio.paInt16,channels=1,rate=RATE,input=True, frames_per_buffer=CHUNK) #uses default input device # create a numpy array holding a single read of audio data for i in range(300): #to it a few times just to see data = np.fromstring(stream.read(CHUNK),dtype=np.int16) data = data * np.hanning(len(data)) # smooth the FFT by windowing data fft = abs(np.fft.fft(data).real) fft = fft[:int(len(fft)/2)] # keep only first half freq = np.fft.fftfreq(CHUNK,1.0/RATE) freq = freq[:int(len(freq)/2)] # keep only first half freqPeak = freq[np.where(fft==np.max(fft))[0][0]]+1 print("peak frequency: %d Hz"%freqPeak) # uncomment this if you want to see what the freq vs FFT looks like plt.plot(freq,fft) plt.axis([0,4000,None,None]) plt.show() plt.close() # close the stream gracefully stream.stop_stream() stream.close() p.terminate()