123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- from typing import List
- import aphrodite
- from aphrodite.lora.request import LoRARequest
- MODEL_PATH = "google/gemma-7b"
- def do_sample(llm: aphrodite.LLM, lora_path: str, lora_id: int) -> List[str]:
- prompts = [
- "Quote: Imagination is",
- "Quote: Be yourself;",
- "Quote: So many books,",
- ]
- sampling_params = aphrodite.SamplingParams(temperature=0, max_tokens=32)
- outputs = llm.generate(
- prompts,
- sampling_params,
- lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
- if lora_id else None)
- # Print the outputs.
- generated_texts: List[str] = []
- for output in outputs:
- prompt = output.prompt
- generated_text = output.outputs[0].text.strip()
- generated_texts.append(generated_text)
- print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
- return generated_texts
- def test_gemma_lora(gemma_lora_files):
- llm = aphrodite.LLM(MODEL_PATH,
- max_model_len=1024,
- enable_lora=True,
- max_loras=4)
- expected_lora_output = [
- "more important than knowledge.\nAuthor: Albert Einstein\n",
- "everyone else is already taken.\nAuthor: Oscar Wilde\n",
- "so little time.\nAuthor: Frank Zappa\n",
- ]
- output1 = do_sample(llm, gemma_lora_files, lora_id=1)
- for i in range(len(expected_lora_output)):
- assert output1[i].startswith(expected_lora_output[i])
- output2 = do_sample(llm, gemma_lora_files, lora_id=2)
- for i in range(len(expected_lora_output)):
- assert output2[i].startswith(expected_lora_output[i])
|