from typing import List import aphrodite from aphrodite.lora.request import LoRARequest MODEL_PATH = "google/gemma-7b" def do_sample(llm: aphrodite.LLM, lora_path: str, lora_id: int) -> List[str]: prompts = [ "Quote: Imagination is", "Quote: Be yourself;", "Quote: So many books,", ] sampling_params = aphrodite.SamplingParams(temperature=0, max_tokens=32) outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None) # Print the outputs. generated_texts: List[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") return generated_texts def test_gemma_lora(gemma_lora_files): llm = aphrodite.LLM(MODEL_PATH, max_model_len=1024, enable_lora=True, max_loras=4) expected_lora_output = [ "more important than knowledge.\nAuthor: Albert Einstein\n", "everyone else is already taken.\nAuthor: Oscar Wilde\n", "so little time.\nAuthor: Frank Zappa\n", ] output1 = do_sample(llm, gemma_lora_files, lora_id=1) for i in range(len(expected_lora_output)): assert output1[i].startswith(expected_lora_output[i]) output2 = do_sample(llm, gemma_lora_files, lora_id=2) for i in range(len(expected_lora_output)): assert output2[i].startswith(expected_lora_output[i])