123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
- # Copyright 2023 The PygmalionAI team.
- # Copyright 2023 The vLLM team.
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only IBM Granite model compatible with HuggingFace weights."""
- from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
- import torch
- from torch import nn
- from transformers import GraniteConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors
- from aphrodite.common.utils import is_hip
- from aphrodite.distributed import (get_pp_group,
- get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import (
- default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name)
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.quantization.compressed_tensors.utils import (
- get_compressed_tensors_cache_scale)
- from .interfaces import SupportsLoRA
- from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers
- class GraniteMLP(nn.Module):
- def __init__(
- self,
- hidden_size: int,
- intermediate_size: int,
- hidden_act: str,
- quant_config: Optional[QuantizationConfig] = None,
- bias: bool = False,
- prefix: str = "",
- ) -> None:
- super().__init__()
- self.gate_up_proj = MergedColumnParallelLinear(
- input_size=hidden_size,
- output_sizes=[intermediate_size] * 2,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.gate_up_proj",
- )
- self.down_proj = RowParallelLinear(
- input_size=intermediate_size,
- output_size=hidden_size,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.down_proj",
- )
- if hidden_act != "silu":
- raise ValueError(
- f"Unsupported activation: {hidden_act}. "
- "Only silu is supported for now."
- )
- self.act_fn = SiluAndMul()
- def forward(self, x):
- gate_up, _ = self.gate_up_proj(x)
- x = self.act_fn(gate_up)
- x, _ = self.down_proj(x)
- return x
- class GraniteAttention(nn.Module):
- def __init__(
- self,
- config: GraniteConfig,
- hidden_size: int,
- num_heads: int,
- num_kv_heads: int,
- rope_theta: float = 10000,
- rope_scaling: Optional[Dict[str, Any]] = None,
- max_position_embeddings: int = 8192,
- quant_config: Optional[QuantizationConfig] = None,
- bias: bool = False,
- cache_config: Optional[CacheConfig] = None,
- prefix: str = "",
- ) -> None:
- super().__init__()
- self.hidden_size = hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = num_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.total_num_kv_heads = num_kv_heads
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- # MistralConfig has an optional head_dim introduced by Mistral-Nemo
- self.head_dim = getattr(
- config, "head_dim", self.hidden_size // self.total_num_heads
- )
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = config.attention_multiplier
- self.rope_theta = rope_theta
- self.max_position_embeddings = max_position_embeddings
- self.qkv_proj = QKVParallelLinear(
- hidden_size=hidden_size,
- head_size=self.head_dim,
- total_num_heads=self.total_num_heads,
- total_num_kv_heads=self.total_num_kv_heads,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.qkv_proj",
- )
- self.o_proj = RowParallelLinear(
- input_size=self.total_num_heads * self.head_dim,
- output_size=hidden_size,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.o_proj",
- )
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- rope_scaling=rope_scaling,
- )
- self.attn = Attention(
- self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config,
- )
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.o_proj(attn_output)
- return output
- class GraniteDecoderLayer(nn.Module):
- def __init__(
- self,
- config: GraniteConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- prefix: str = "",
- ) -> None:
- super().__init__()
- self.hidden_size = config.hidden_size
- self.residual_multiplier = config.residual_multiplier
- rope_theta = getattr(config, "rope_theta", 10000)
- rope_scaling = getattr(config, "rope_scaling", None)
- if rope_scaling is not None and getattr(
- config, "original_max_position_embeddings", None
- ):
- rope_scaling[
- "original_max_position_embeddings"
- ] = config.original_max_position_embeddings
- max_position_embeddings = getattr(
- config, "max_position_embeddings", 8192
- )
- # Support abacusai/Smaug-72B-v0.1 with attention_bias
- # Support internlm/internlm-7b with bias
- attention_bias = getattr(config, "attention_bias", False) or getattr(
- config, "bias", False
- )
- self.self_attn = GraniteAttention(
- config=config,
- hidden_size=self.hidden_size,
- num_heads=config.num_attention_heads,
- num_kv_heads=getattr(
- config, "num_key_value_heads", config.num_attention_heads
- ),
- rope_theta=rope_theta,
- rope_scaling=rope_scaling,
- max_position_embeddings=max_position_embeddings,
- quant_config=quant_config,
- bias=attention_bias,
- cache_config=cache_config,
- prefix=f"{prefix}.self_attn",
- )
- self.mlp = GraniteMLP(
- hidden_size=self.hidden_size,
- intermediate_size=config.intermediate_size,
- hidden_act=config.hidden_act,
- quant_config=quant_config,
- bias=getattr(config, "mlp_bias", False),
- prefix=f"{prefix}.mlp",
- )
- self.input_layernorm = RMSNorm(
- config.hidden_size, eps=config.rms_norm_eps
- )
- self.post_attention_layernorm = RMSNorm(
- config.hidden_size, eps=config.rms_norm_eps
- )
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Self Attention
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- hidden_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = residual + hidden_states * self.residual_multiplier
- # Fully Connected
- residual = hidden_states
- hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = residual + hidden_states * self.residual_multiplier
- return hidden_states
- class GraniteModel(nn.Module):
- def __init__(
- self,
- config: GraniteConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- prefix: str = "",
- ) -> None:
- super().__init__()
- self.config = config
- self.padding_idx = config.pad_token_id
- lora_vocab = (
- (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
- if lora_config
- else 0
- )
- self.vocab_size = config.vocab_size + lora_vocab
- self.org_vocab_size = config.vocab_size
- if get_pp_group().is_first_rank or (
- config.tie_word_embeddings and get_pp_group().is_last_rank
- ):
- self.embed_tokens = VocabParallelEmbedding(
- self.vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- quant_config=quant_config,
- )
- else:
- self.embed_tokens = PPMissingLayer()
- self.start_layer, self.end_layer, self.layers = make_layers(
- config.num_hidden_layers,
- lambda prefix: GraniteDecoderLayer(
- config=config,
- cache_config=cache_config,
- quant_config=quant_config,
- prefix=prefix,
- ),
- prefix=f"{prefix}.layers",
- )
- if get_pp_group().is_last_rank:
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- else:
- self.norm = PPMissingLayer()
- def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
- return self.embed_tokens(input_ids)
- def forward(
- self,
- input_ids: Optional[torch.Tensor],
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors],
- inputs_embeds: Optional[torch.Tensor] = None,
- ) -> Union[torch.Tensor, IntermediateTensors]:
- if get_pp_group().is_first_rank:
- if inputs_embeds is not None:
- hidden_states = inputs_embeds
- else:
- hidden_states = self.get_input_embeddings(input_ids)
- residual = None
- else:
- assert intermediate_tensors is not None
- hidden_states = intermediate_tensors["hidden_states"]
- residual = intermediate_tensors["residual"]
- hidden_states *= self.config.embedding_multiplier
- for i in range(self.start_layer, self.end_layer):
- layer = self.layers[i]
- hidden_states = layer(
- positions,
- hidden_states,
- kv_caches[i - self.start_layer],
- attn_metadata,
- )
- if not get_pp_group().is_last_rank:
- return IntermediateTensors(
- {"hidden_states": hidden_states, "residual": residual}
- )
- hidden_states = self.norm(hidden_states)
- return hidden_states
- class GraniteForCausalLM(nn.Module, SupportsLoRA):
- packed_modules_mapping = {
- "qkv_proj": [
- "q_proj",
- "k_proj",
- "v_proj",
- ],
- "gate_up_proj": [
- "gate_proj",
- "up_proj",
- ],
- }
- # LoRA specific attributes
- supported_lora_modules = [
- "qkv_proj",
- "o_proj",
- "gate_up_proj",
- "down_proj",
- "embed_tokens",
- "lm_head",
- ]
- embedding_modules = {
- "embed_tokens": "input_embeddings",
- "lm_head": "output_embeddings",
- }
- embedding_padding_modules = ["lm_head"]
- bitsandbytes_stacked_params_mapping = {
- # shard_name, weight_name, index
- "q_proj": ("qkv_proj", 0),
- "k_proj": ("qkv_proj", 1),
- "v_proj": ("qkv_proj", 2),
- "gate_proj": ("gate_up_proj", 0),
- "up_proj": ("gate_up_proj", 1),
- }
- def __init__(
- self,
- config: GraniteConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.lora_config = lora_config
- self.model = GraniteModel(
- config,
- cache_config,
- quant_config,
- lora_config=lora_config,
- prefix="model",
- )
- if get_pp_group().is_last_rank:
- self.unpadded_vocab_size = config.vocab_size
- if lora_config:
- self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
- self.lm_head = ParallelLMHead(
- self.unpadded_vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- padding_size=DEFAULT_VOCAB_PADDING_SIZE
- # We need bigger padding if using lora for kernel
- # compatibility
- if not lora_config
- else lora_config.lora_vocab_padding_size,
- quant_config=quant_config,
- )
- if config.tie_word_embeddings:
- self.lm_head.weight = self.model.embed_tokens.weight
- logit_scale = getattr(config, "logit_scale", 1.0)
- self.logits_processor = LogitsProcessor(
- self.unpadded_vocab_size, config.vocab_size, logit_scale
- )
- self.sampler = Sampler()
- else:
- self.lm_head = PPMissingLayer()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> Union[torch.Tensor, IntermediateTensors]:
- model_output = self.model(
- input_ids, positions, kv_caches, attn_metadata, intermediate_tensors
- )
- return model_output
- def compute_logits(
- self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- if logits is not None:
- logits /= self.config.logits_scaling
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def make_empty_intermediate_tensors(
- self, batch_size: int, dtype: torch.dtype, device: torch.device
- ) -> IntermediateTensors:
- return IntermediateTensors(
- {
- "hidden_states": torch.zeros(
- (batch_size, self.config.hidden_size),
- dtype=dtype,
- device=device,
- ),
- "residual": torch.zeros(
- (batch_size, self.config.hidden_size),
- dtype=dtype,
- device=device,
- ),
- }
- )
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- (".qkv_proj", ".q_proj", "q"),
- (".qkv_proj", ".k_proj", "k"),
- (".qkv_proj", ".v_proj", "v"),
- (".gate_up_proj", ".gate_proj", 0),
- (".gate_up_proj", ".up_proj", 1),
- ]
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- if "rotary_emb.inv_freq" in name:
- continue
- if (
- "rotary_emb.cos_cached" in name
- or "rotary_emb.sin_cached" in name
- ):
- # Models trained using ColossalAI may include these tensors in
- # the checkpoint. Skip them.
- continue
- # With tie_word_embeddings, we can skip lm_head.weight
- # The weight might appear unnecessarily in the files if the model is
- # processed with quantization, LoRA, fine-tuning, etc.
- if self.config.tie_word_embeddings and "lm_head.weight" in name:
- continue
- if scale_name := get_compressed_tensors_cache_scale(name):
- # Loading kv cache scales for compressed-tensors quantization
- param = params_dict[scale_name]
- weight_loader = getattr(
- param, "weight_loader", default_weight_loader
- )
- loaded_weight = loaded_weight[0]
- weight_loader(param, loaded_weight)
- continue
- for param_name, weight_name, shard_id in stacked_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- if is_pp_missing_parameter(name, self):
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- # Remapping the name of FP8 kv-scale.
- name = maybe_remap_kv_scale_name(name, params_dict)
- if name is None:
- continue
- if is_pp_missing_parameter(name, self):
- continue
- param = params_dict[name]
- weight_loader = getattr(
- param, "weight_loader", default_weight_loader
- )
- weight_loader(param, loaded_weight)
- # If this function is called, it should always initialize KV cache scale
- # factors (or else raise an exception). Thus, handled exceptions should
- # make sure to leave KV cache scale factors in a known good (dummy) state
- def load_kv_cache_scales(self, quantization_param_path: str) -> None:
- tp_size = get_tensor_model_parallel_world_size()
- tp_rank = get_tensor_model_parallel_rank()
- for layer_idx, scaling_factor in kv_cache_scales_loader(
- quantization_param_path,
- tp_rank,
- tp_size,
- self.config.num_hidden_layers,
- self.config.__class__.model_type,
- ):
- if not isinstance(self.model.layers[layer_idx], nn.Identity):
- layer_self_attn = self.model.layers[layer_idx].self_attn
- if is_hip():
- # The scaling factor convention we are assuming is
- # quantized_value * scaling_factor ~= true_value
- # which is consistent with the practice of setting
- # scaling_factor = tensor_amax / FPtype_max
- scaling_factor *= 2
- if hasattr(layer_self_attn, "kv_scale"):
- layer_self_attn.attn._kv_scale = scaling_factor
- else:
- raise RuntimeError(
- "Self attention has no KV cache scaling "
- "factor attribute!"
- )
|