# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only IBM Granite model compatible with HuggingFace weights.""" from typing import Any, Dict, Iterable, List, Optional, Tuple, Union import torch from torch import nn from transformers import GraniteConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig, LoRAConfig from aphrodite.common.sequence import IntermediateTensors from aphrodite.common.utils import is_hip from aphrodite.distributed import (get_pp_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput from aphrodite.modeling.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import ( default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig from aphrodite.quantization.compressed_tensors.utils import ( get_compressed_tensors_cache_scale) from .interfaces import SupportsLoRA from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers class GraniteMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, bias: bool = False, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( input_size=hidden_size, output_sizes=[intermediate_size] * 2, bias=bias, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( input_size=intermediate_size, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class GraniteAttention(nn.Module): def __init__( self, config: GraniteConfig, hidden_size: int, num_heads: int, num_kv_heads: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 8192, quant_config: Optional[QuantizationConfig] = None, bias: bool = False, cache_config: Optional[CacheConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) # MistralConfig has an optional head_dim introduced by Mistral-Nemo self.head_dim = getattr( config, "head_dim", self.hidden_size // self.total_num_heads ) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = config.attention_multiplier self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size=hidden_size, head_size=self.head_dim, total_num_heads=self.total_num_heads, total_num_kv_heads=self.total_num_kv_heads, bias=bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( input_size=self.total_num_heads * self.head_dim, output_size=hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, ) self.attn = Attention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output class GraniteDecoderLayer(nn.Module): def __init__( self, config: GraniteConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size self.residual_multiplier = config.residual_multiplier rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None ): rope_scaling[ "original_max_position_embeddings" ] = config.original_max_position_embeddings max_position_embeddings = getattr( config, "max_position_embeddings", 8192 ) # Support abacusai/Smaug-72B-v0.1 with attention_bias # Support internlm/internlm-7b with bias attention_bias = getattr(config, "attention_bias", False) or getattr( config, "bias", False ) self.self_attn = GraniteAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=getattr( config, "num_key_value_heads", config.num_attention_heads ), rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, quant_config=quant_config, bias=attention_bias, cache_config=cache_config, prefix=f"{prefix}.self_attn", ) self.mlp = GraniteMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, bias=getattr(config, "mlp_bias", False), prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) hidden_states = residual + hidden_states * self.residual_multiplier # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier return hidden_states class GraniteModel(nn.Module): def __init__( self, config: GraniteConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, prefix: str = "", ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id lora_vocab = ( (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0 ) self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size if get_pp_group().is_first_rank or ( config.tie_word_embeddings and get_pp_group().is_last_rank ): self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, quant_config=quant_config, ) else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: GraniteDecoderLayer( config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix, ), prefix=f"{prefix}.layers", ) if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: Optional[torch.Tensor], positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors], inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] hidden_states *= self.config.embedding_multiplier for i in range(self.start_layer, self.end_layer): layer = self.layers[i] hidden_states = layer( positions, hidden_states, kv_caches[i - self.start_layer], attn_metadata, ) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) hidden_states = self.norm(hidden_states) return hidden_states class GraniteForCausalLM(nn.Module, SupportsLoRA): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens", "lm_head", ] embedding_modules = { "embed_tokens": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = ["lm_head"] bitsandbytes_stacked_params_mapping = { # shard_name, weight_name, index "q_proj": ("qkv_proj", 0), "k_proj": ("qkv_proj", 1), "v_proj": ("qkv_proj", 2), "gate_proj": ("gate_up_proj", 0), "up_proj": ("gate_up_proj", 1), } def __init__( self, config: GraniteConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: super().__init__() self.config = config self.lora_config = lora_config self.model = GraniteModel( config, cache_config, quant_config, lora_config=lora_config, prefix="model", ) if get_pp_group().is_last_rank: self.unpadded_vocab_size = config.vocab_size if lora_config: self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, padding_size=DEFAULT_VOCAB_PADDING_SIZE # We need bigger padding if using lora for kernel # compatibility if not lora_config else lora_config.lora_vocab_padding_size, quant_config=quant_config, ) if config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight logit_scale = getattr(config, "logit_scale", 1.0) self.logits_processor = LogitsProcessor( self.unpadded_vocab_size, config.vocab_size, logit_scale ) self.sampler = Sampler() else: self.lm_head = PPMissingLayer() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> Union[torch.Tensor, IntermediateTensors]: model_output = self.model( input_ids, positions, kv_caches, attn_metadata, intermediate_tensors ) return model_output def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) if logits is not None: logits /= self.config.logits_scaling return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def make_empty_intermediate_tensors( self, batch_size: int, dtype: torch.dtype, device: torch.device ) -> IntermediateTensors: return IntermediateTensors( { "hidden_states": torch.zeros( (batch_size, self.config.hidden_size), dtype=dtype, device=device, ), "residual": torch.zeros( (batch_size, self.config.hidden_size), dtype=dtype, device=device, ), } ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue if ( "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name ): # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue # With tie_word_embeddings, we can skip lm_head.weight # The weight might appear unnecessarily in the files if the model is # processed with quantization, LoRA, fine-tuning, etc. if self.config.tie_word_embeddings and "lm_head.weight" in name: continue if scale_name := get_compressed_tensors_cache_scale(name): # Loading kv cache scales for compressed-tensors quantization param = params_dict[scale_name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) loaded_weight = loaded_weight[0] weight_loader(param, loaded_weight) continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) # If this function is called, it should always initialize KV cache scale # factors (or else raise an exception). Thus, handled exceptions should # make sure to leave KV cache scale factors in a known good (dummy) state def load_kv_cache_scales(self, quantization_param_path: str) -> None: tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() for layer_idx, scaling_factor in kv_cache_scales_loader( quantization_param_path, tp_rank, tp_size, self.config.num_hidden_layers, self.config.__class__.model_type, ): if not isinstance(self.model.layers[layer_idx], nn.Identity): layer_self_attn = self.model.layers[layer_idx].self_attn if is_hip(): # The scaling factor convention we are assuming is # quantized_value * scaling_factor ~= true_value # which is consistent with the practice of setting # scaling_factor = tensor_amax / FPtype_max scaling_factor *= 2 if hasattr(layer_self_attn, "kv_scale"): layer_self_attn.attn._kv_scale = scaling_factor else: raise RuntimeError( "Self attention has no KV cache scaling " "factor attribute!" )