123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746 |
- #include "cpu_types.hpp"
- namespace {
- template <typename scalar_t> struct KernelVecType {
- using q_load_vec_type = void;
- using q_vec_type = void;
- using k_load_vec_type = void;
- using k_vec_type = void;
- using qk_acc_vec_type = void;
- using v_load_vec_type = void;
- };
- template <> struct KernelVecType<float> {
- using q_load_vec_type = vec_op::FP32Vec4;
- using q_vec_type = vec_op::FP32Vec16;
- using k_load_vec_type = vec_op::FP32Vec16;
- using k_vec_type = vec_op::FP32Vec16;
- using qk_acc_vec_type = vec_op::FP32Vec16;
- using v_load_vec_type = vec_op::FP32Vec16;
- };
- #ifdef __AVX512BF16__
- template <> struct KernelVecType<c10::BFloat16> {
- using q_load_vec_type = vec_op::BF16Vec8;
- using q_vec_type = vec_op::BF16Vec32;
- using k_load_vec_type = vec_op::BF16Vec32;
- using k_vec_type = vec_op::BF16Vec32;
- using qk_acc_vec_type = vec_op::FP32Vec16;
- using v_load_vec_type = vec_op::BF16Vec16;
- };
- #else
- template <> struct KernelVecType<c10::BFloat16> {
- using q_load_vec_type = vec_op::BF16Vec8;
- using q_vec_type = vec_op::FP32Vec16;
- using k_load_vec_type = vec_op::BF16Vec16;
- using k_vec_type = vec_op::FP32Vec16;
- using qk_acc_vec_type = vec_op::FP32Vec16;
- using v_load_vec_type = vec_op::BF16Vec16;
- };
- #endif
- template <typename T>
- FORCE_INLINE std::pair<T, T> reduceSoftmax(T *data, const int size,
- const int capacity) {
- T max = data[0];
- for (int i = 1; i < size; ++i) {
- max = max >= data[i] ? max : data[i];
- }
- T sum = 0;
- for (int i = 0; i < size; ++i) {
- data[i] = std::exp(data[i] - max);
- sum += data[i];
- }
- int i = 0;
- for (; i < size; ++i) {
- data[i] /= sum;
- }
- for (; i < capacity; ++i) {
- data[i] = 0;
- }
- return {max, sum};
- }
- template <typename T>
- FORCE_INLINE std::pair<T, T>
- reduceSoftmaxAlibi(T *data, const int size, const int capacity,
- const float alibi_slope, const int start_index,
- const int context_len) {
- data[0] += alibi_slope * (start_index - context_len + 1);
- T max = data[0];
- for (int i = 1; i < size; ++i) {
- T qk = data[i] + alibi_slope * (start_index + i - context_len + 1);
- data[i] = qk;
- max = max >= qk ? max : qk;
- }
- T sum = 0;
- for (int i = 0; i < size; ++i) {
- data[i] = std::exp(data[i] - max);
- sum += data[i];
- }
- int i = 0;
- for (; i < size; ++i) {
- data[i] /= sum;
- }
- for (; i < capacity; ++i) {
- data[i] = 0;
- }
- return {max, sum};
- }
- template <typename T>
- FORCE_INLINE void reducePartitonSoftmax(const T *max_data, T *sum_data,
- const int size) {
- T max = max_data[0];
- for (int i = 1; i < size; ++i) {
- max = max >= max_data[i] ? max : max_data[i];
- }
- T rescaled_sum = 0;
- for (int i = 0; i < size; ++i) {
- T rescale_factor = std::exp(max_data[i] - max);
- rescaled_sum += rescale_factor * sum_data[i];
- sum_data[i] *= rescale_factor;
- }
- for (int i = 0; i < size; ++i) {
- sum_data[i] /= rescaled_sum + 1e-8;
- }
- }
- template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
- struct reduceQKBlockKernel {
- using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
- using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
- using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
- using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
- using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;
- constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
- constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
- constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;
- static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
- static_assert(k_load_vec_type::get_elem_num() % x == 0);
- static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);
- FORCE_INLINE static void call(const scalar_t *__restrict__ q,
- const scalar_t *__restrict__ k_block,
- float *__restrict__ logits, float scale,
- const int token_num) {
- const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;
- qk_acc_vec_type group_accums[MAX_GROUP_NUM];
- if (token_num == BLOCK_SIZE) {
- for (int q_offset = 0; q_offset < HEAD_SIZE;
- q_offset += x, k_block += x * BLOCK_SIZE) {
- q_load_vec_type q_load_group_vec(q + q_offset);
- q_vec_type q_group_vec(q_load_group_vec);
- vec_op::unroll_loop<int, MAX_GROUP_NUM>(
- [k_block, &q_group_vec, &group_accums](int token_group_idx) {
- k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
- TOKEN_PER_GROUP);
- k_vec_type k_group_vec(k_load_group_vec);
- vec_op::fma(group_accums[token_group_idx], q_group_vec,
- k_group_vec);
- vec_op::prefetch(k_block + x * BLOCK_SIZE +
- token_group_idx * x * TOKEN_PER_GROUP);
- });
- }
- } else {
- for (int q_offset = 0; q_offset < HEAD_SIZE;
- q_offset += x, k_block += x * BLOCK_SIZE) {
- q_load_vec_type q_load_group_vec(q + q_offset);
- q_vec_type q_group_vec(q_load_group_vec);
- for (int token_group_start = 0; token_group_start < group_num;
- token_group_start += UNROLL_GROUP_NUM) {
- vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
- [token_group_start, k_block, &q_group_vec,
- &group_accums](int token_group_idx) {
- token_group_idx += token_group_start;
- k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
- TOKEN_PER_GROUP);
- k_vec_type k_group_vec(k_load_group_vec);
- vec_op::fma(group_accums[token_group_idx], q_group_vec,
- k_group_vec);
- vec_op::prefetch(k_block + x * BLOCK_SIZE +
- token_group_idx * x * TOKEN_PER_GROUP);
- });
- }
- }
- }
- for (int token_group_idx = 0; token_group_idx < group_num;
- ++token_group_idx) {
- vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
- [&group_accums, logits, scale, token_group_idx](int token_idx) {
- float dot_v =
- group_accums[token_group_idx]
- .template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
- TOKEN_PER_GROUP>(token_idx);
- logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
- dot_v * scale;
- });
- }
- }
- };
- template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
- int HEAD_PARTITION_SIZE, typename acc_t>
- FORCE_INLINE void reduceValueBlock(const float *prob, const scalar_t *v_block,
- acc_t &&acc) {
- using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
- constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
- static_assert(BLOCK_SIZE == ELEM_NUM);
- vec_op::FP32Vec16 prob_vec(prob);
- vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
- v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
- vec_op::FP32Vec16 fp32_v_vec(v_vec);
- acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
- });
- }
- }; // namespace
- // Paged attention v1
- namespace {
- template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
- struct paged_attention_v1_impl {
- static void
- call(scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
- const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
- const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
- // head_size/x, block_size, x]
- const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
- // head_size, block_size]
- const int num_kv_heads, const float scale,
- const int
- *__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
- const int *__restrict__ context_lens, // [num_seqs]
- const int max_num_blocks_per_seq,
- const float *__restrict__ alibi_slopes, // [num_heads]
- const int q_stride, const int kv_block_stride, const int kv_head_stride,
- const int num_seqs, const int num_heads) {
- constexpr int x = 16 / sizeof(scalar_t);
- const int num_queries_per_kv = num_heads / num_kv_heads;
- static_assert(BLOCK_SIZE == 16);
- int max_context_len = max_num_blocks_per_seq * BLOCK_SIZE;
- int max_context_len_padded = (max_context_len + 15) & 0xFFFFFFF0;
- TORCH_CHECK((max_context_len_padded * sizeof(float)) % 64 == 0);
- const int parallel_work_item_num = omp_get_max_threads();
- size_t logits_bytes =
- parallel_work_item_num * max_context_len_padded * sizeof(float);
- float *logits = (float *)std::aligned_alloc(
- 64, logits_bytes); // Cacheline alignment for each context token.
- // [parallel_work_item_num, max_context_len_padded]
- #pragma omp parallel for collapse(2) schedule(dynamic, 1)
- for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
- for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
- int context_len = context_lens[seq_idx];
- const int *seq_block_table =
- block_tables + max_num_blocks_per_seq * seq_idx;
- const int block_num = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
- const int64_t kv_head_idx = head_idx / num_queries_per_kv;
- const scalar_t *__restrict__ q_vec_ptr =
- q + seq_idx * q_stride + head_idx * HEAD_SIZE;
- const int last_block_token_num =
- context_len - (block_num - 1) * BLOCK_SIZE;
- float *__restrict__ thread_block_logits =
- logits + omp_get_thread_num() * max_context_len_padded;
- // Compute logits
- for (int block_idx = 0; block_idx < block_num; ++block_idx) {
- const int64_t physical_block_idx = seq_block_table[block_idx];
- const scalar_t *__restrict__ k_block_cache_ptr =
- k_cache + physical_block_idx * kv_block_stride +
- kv_head_idx * kv_head_stride;
- float *__restrict__ head_block_logits =
- thread_block_logits + block_idx * BLOCK_SIZE;
- reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
- q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
- block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
- }
- // Compute softmax
- if (alibi_slopes) {
- reduceSoftmaxAlibi(thread_block_logits, context_len,
- block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
- context_len);
- } else {
- reduceSoftmax(thread_block_logits, context_len,
- block_num * BLOCK_SIZE);
- }
- // Compute value
- constexpr int head_elem_num_per_partition = 16;
- constexpr int head_partition_num =
- HEAD_SIZE / head_elem_num_per_partition;
- for (int head_part_idx = 0; head_part_idx < head_partition_num;
- ++head_part_idx) {
- vec_op::FP32Vec16 accums[head_elem_num_per_partition];
- scalar_t *__restrict__ out_ptr =
- out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
- head_part_idx * head_elem_num_per_partition;
- for (int block_idx = 0; block_idx < block_num; ++block_idx) {
- const int64_t physical_block_idx = seq_block_table[block_idx];
- const float *__restrict__ prob_vec_ptr =
- thread_block_logits + block_idx * BLOCK_SIZE;
- const scalar_t *__restrict__ v_block_cache_ptr =
- v_cache + physical_block_idx * kv_block_stride +
- kv_head_idx * kv_head_stride +
- BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
- reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
- head_elem_num_per_partition>(
- prob_vec_ptr, v_block_cache_ptr, accums);
- if (block_idx != block_num - 1) {
- const int64_t next_physical_block_idx =
- seq_block_table[block_idx + 1];
- const scalar_t *__restrict__ next_v_block_cache_ptr =
- v_cache + next_physical_block_idx * kv_block_stride +
- kv_head_idx * kv_head_stride +
- BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
- vec_op::unroll_loop<int, head_elem_num_per_partition>(
- [&](int head_elem_idx) {
- if (head_elem_idx % 2 == 0) {
- vec_op::prefetch(next_v_block_cache_ptr +
- BLOCK_SIZE * head_elem_idx);
- }
- });
- }
- }
- vec_op::unroll_loop<int, head_elem_num_per_partition>(
- [&](int head_elem_idx) {
- float value = accums[head_elem_idx].reduce_sum();
- vec_op::storeFP32(value, out_ptr + head_elem_idx);
- });
- }
- }
- }
- std::free(logits);
- }
- };
- #define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
- paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call( \
- out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
- block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \
- alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \
- num_heads);
- template <typename T, int BLOCK_SIZE>
- void paged_attention_v1_impl_launcher(
- torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache,
- torch::Tensor &value_cache, int num_kv_heads, float scale,
- torch::Tensor &block_tables, torch::Tensor &context_lens,
- int max_context_len, const c10::optional<torch::Tensor> &alibi_slopes) {
- int num_seqs = query.size(0);
- int num_heads = query.size(1);
- int head_size = query.size(2);
- int max_num_blocks_per_seq = block_tables.size(1);
- int q_stride = query.stride(0);
- int kv_block_stride = key_cache.stride(0);
- int kv_head_stride = key_cache.stride(1);
- // NOTE: alibi_slopes is optional.
- const float *alibi_slopes_ptr =
- alibi_slopes
- ? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
- : nullptr;
- T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
- T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
- T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
- T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
- int *block_tables_ptr = block_tables.data_ptr<int>();
- int *context_lens_ptr = context_lens.data_ptr<int>();
- switch (head_size) {
- case 64:
- LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
- break;
- case 80:
- LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
- break;
- case 96:
- LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
- break;
- case 112:
- LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
- break;
- case 128:
- LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
- break;
- case 256:
- LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
- break;
- default:
- TORCH_CHECK(false, "Unsupported head size: ", head_size);
- break;
- }
- }
- #define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
- paged_attention_v1_impl_launcher<T, BLOCK_SIZE>( \
- out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
- context_lens, max_context_len, alibi_slopes);
- #define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
- switch (block_size) { \
- case 16: \
- CALL_V1_KERNEL_LAUNCHER(T, 16); \
- break; \
- default: \
- TORCH_CHECK(false, "Unsupported block size: ", block_size); \
- break; \
- }
- } // namespace
- void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
- torch::Tensor &key_cache, torch::Tensor &value_cache,
- int num_kv_heads, float scale,
- torch::Tensor &block_tables,
- torch::Tensor &context_lens, int block_size,
- int max_context_len,
- const c10::optional<torch::Tensor> &alibi_slopes,
- const std::string &kv_cache_dtype, float kv_scale) {
- TORCH_CHECK(kv_scale == 1.0f);
- APHRODITE_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
- [&] {
- CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
- CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
- CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
- });
- }
- // Paged attention v2
- namespace {
- template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
- struct paged_attention_v2_impl {
- static void call(
- scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size]
- float *__restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
- float
- *__restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
- scalar_t *__restrict__ tmp_out, // [num_seqs, num_heads,
- // max_num_partitions, head_size]
- const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size]
- const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
- // head_size/x, block_size, x]
- const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
- // head_size, block_size]
- const int num_kv_heads, const float scale,
- const int
- *__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
- const int *__restrict__ context_lens, // [num_seqs]
- const int max_num_blocks_per_seq,
- const float *__restrict__ alibi_slopes, // [num_heads]
- const int q_stride, const int kv_block_stride, const int kv_head_stride,
- const int num_seqs, const int num_heads, const int max_num_partitions) {
- constexpr int x = 16 / sizeof(scalar_t);
- const int num_queries_per_kv = num_heads / num_kv_heads;
- static_assert(BLOCK_SIZE == 16);
- static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
- static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);
- #pragma omp parallel for collapse(3) schedule(static, 1)
- for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
- for (int partition_idx = 0; partition_idx < max_num_partitions;
- ++partition_idx) {
- for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
- const int context_len = context_lens[seq_idx];
- const int start_token_idx = partition_idx * PARTITION_SIZE;
- if (start_token_idx >= context_len)
- continue;
- const int partition_num =
- (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
- const bool no_reduce = (partition_num == 1);
- const int context_token_num =
- (std::min(context_len, start_token_idx + PARTITION_SIZE) -
- start_token_idx);
- const int block_num =
- (context_token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
- const int last_block_token_num =
- context_token_num - (block_num - 1) * BLOCK_SIZE;
- const int *seq_block_table = block_tables +
- max_num_blocks_per_seq * seq_idx +
- start_token_idx / BLOCK_SIZE;
- const int64_t kv_head_idx = head_idx / num_queries_per_kv;
- const scalar_t *__restrict__ q_vec_ptr =
- q + seq_idx * q_stride + head_idx * HEAD_SIZE;
- float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};
- // Compute logits
- for (int block_idx = 0; block_idx < block_num; ++block_idx) {
- const int64_t physical_block_idx = seq_block_table[block_idx];
- const scalar_t *__restrict__ k_block_cache_ptr =
- k_cache + physical_block_idx * kv_block_stride +
- kv_head_idx * kv_head_stride;
- float *__restrict__ head_block_logits =
- logits + block_idx * BLOCK_SIZE;
- reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
- q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
- block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
- }
- std::pair<float, float> max_and_sum;
- if (alibi_slopes) {
- max_and_sum = reduceSoftmaxAlibi(
- logits, context_token_num, block_num * BLOCK_SIZE,
- alibi_slopes[head_idx], start_token_idx, context_len);
- } else {
- max_and_sum = reduceSoftmax(logits, context_token_num,
- block_num * BLOCK_SIZE);
- }
- auto &&[max_logit, exp_sum] = max_and_sum;
- scalar_t *__restrict__ output_buffer = nullptr;
- if (!no_reduce) {
- auto idx = seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions + partition_idx;
- max_logits[idx] = max_logit;
- exp_sums[idx] = exp_sum;
- output_buffer =
- tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
- head_idx * max_num_partitions * HEAD_SIZE +
- partition_idx * HEAD_SIZE;
- } else {
- output_buffer =
- out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
- }
- // Compute value
- constexpr int head_elem_num_per_partition = 16;
- constexpr int head_partition_num =
- HEAD_SIZE / head_elem_num_per_partition;
- for (int head_part_idx = 0; head_part_idx < head_partition_num;
- ++head_part_idx) {
- vec_op::FP32Vec16 accums[head_elem_num_per_partition];
- scalar_t *__restrict__ out_ptr =
- output_buffer + head_part_idx * head_elem_num_per_partition;
- for (int block_idx = 0; block_idx < block_num; ++block_idx) {
- const int64_t physical_block_idx = seq_block_table[block_idx];
- const float *__restrict__ prob_vec_ptr =
- logits + block_idx * BLOCK_SIZE;
- const scalar_t *__restrict__ v_block_cache_ptr =
- v_cache + physical_block_idx * kv_block_stride +
- kv_head_idx * kv_head_stride +
- BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
- reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
- head_elem_num_per_partition>(
- prob_vec_ptr, v_block_cache_ptr, accums);
- if (block_idx != block_num - 1) {
- const int64_t next_physical_block_idx =
- seq_block_table[block_idx + 1];
- const scalar_t *__restrict__ next_v_block_cache_ptr =
- v_cache + next_physical_block_idx * kv_block_stride +
- kv_head_idx * kv_head_stride +
- BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
- vec_op::unroll_loop<int, head_elem_num_per_partition>(
- [&](int head_elem_idx) {
- if (head_elem_idx % 2 == 0) {
- vec_op::prefetch(next_v_block_cache_ptr +
- BLOCK_SIZE * head_elem_idx);
- }
- });
- }
- }
- vec_op::unroll_loop<int, head_elem_num_per_partition>(
- [&](int head_elem_idx) {
- float value = accums[head_elem_idx].reduce_sum();
- vec_op::storeFP32(value, out_ptr + head_elem_idx);
- });
- }
- }
- }
- }
- // Rescale partition softmax and store the factors to exp_sums
- #pragma omp parallel for collapse(2) schedule(static, 1)
- for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
- for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
- const int context_len = context_lens[seq_idx];
- const int partition_num =
- (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
- if (partition_num == 1)
- continue;
- reducePartitonSoftmax(
- max_logits + seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions,
- exp_sums + seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions,
- partition_num);
- }
- }
- // Reduce values
- using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
- static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
- constexpr int head_elem_num_per_group =
- 16; // Note: didn't align with the cacheline size, due to some HEAD_SIZE
- // didn't align with 64 bytes
- static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
- constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
- const float *__restrict__ rescale_factors = exp_sums;
- #pragma omp parallel for collapse(3) schedule(static, 1)
- for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
- for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
- for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
- const int context_len = context_lens[seq_idx];
- const int partition_num =
- (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
- if (partition_num == 1)
- continue;
- const float *__restrict__ seq_head_rescale_factors =
- rescale_factors + seq_idx * num_heads * max_num_partitions +
- head_idx * max_num_partitions;
- const scalar_t *__restrict__ seq_head_tmp_out =
- tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
- head_idx * max_num_partitions * HEAD_SIZE +
- group_idx * head_elem_num_per_group;
- scalar_t *__restrict__ seq_head_output =
- out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
- group_idx * head_elem_num_per_group;
- vec_op::FP32Vec16 acc;
- for (int i = 0; i < partition_num; ++i) {
- vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
- v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
- vec_op::FP32Vec16 fp32_value(value);
- acc = acc + fp32_value * rescale_factor;
- }
- v_load_vec_type cast_acc(acc);
- cast_acc.save(seq_head_output);
- }
- }
- }
- }
- };
- #define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
- paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call( \
- out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \
- key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
- context_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
- kv_block_stride, kv_head_stride, num_seqs, num_heads, \
- max_num_partitions);
- template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
- void paged_attention_v2_impl_launcher(
- torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits,
- torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache,
- torch::Tensor &value_cache, int num_kv_heads, float scale,
- torch::Tensor &block_tables, torch::Tensor &context_lens, int block_size,
- int max_context_len, const c10::optional<torch::Tensor> &alibi_slopes) {
- int num_seqs = query.size(0);
- int num_heads = query.size(1);
- int head_size = query.size(2);
- int max_num_blocks_per_seq = block_tables.size(1);
- int q_stride = query.stride(0);
- int kv_block_stride = key_cache.stride(0);
- int kv_head_stride = key_cache.stride(1);
- int max_num_partitions = exp_sums.size(-1);
- // NOTE: alibi_slopes is optional.
- const float *alibi_slopes_ptr =
- alibi_slopes
- ? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
- : nullptr;
- T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
- float *exp_sums_ptr = reinterpret_cast<float *>(exp_sums.data_ptr());
- float *max_logits_ptr = reinterpret_cast<float *>(max_logits.data_ptr());
- T *tmp_out_ptr = reinterpret_cast<T *>(tmp_out.data_ptr());
- T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
- T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
- T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
- int *block_tables_ptr = block_tables.data_ptr<int>();
- int *context_lens_ptr = context_lens.data_ptr<int>();
- switch (head_size) {
- case 64:
- LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
- break;
- case 80:
- LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
- break;
- case 96:
- LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
- break;
- case 112:
- LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
- break;
- case 128:
- LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
- break;
- case 256:
- LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
- break;
- default:
- TORCH_CHECK(false, "Unsupported head size: ", head_size);
- break;
- }
- }
- #define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
- paged_attention_v2_impl_launcher<T, BLOCK_SIZE>( \
- out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
- num_kv_heads, scale, block_tables, context_lens, block_size, \
- max_context_len, alibi_slopes);
- #define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
- switch (block_size) { \
- case 16: \
- CALL_V2_KERNEL_LAUNCHER(T, 16); \
- break; \
- default: \
- TORCH_CHECK(false, "Unsupported block size: ", block_size); \
- break; \
- }
- } // namespace
- void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
- torch::Tensor &max_logits, torch::Tensor &tmp_out,
- torch::Tensor &query, torch::Tensor &key_cache,
- torch::Tensor &value_cache, int num_kv_heads,
- float scale, torch::Tensor &block_tables,
- torch::Tensor &context_lens, int block_size,
- int max_context_len,
- const c10::optional<torch::Tensor> &alibi_slopes,
- const std::string &kv_cache_dtype, float kv_scale) {
- TORCH_CHECK(kv_scale == 1.0f);
- APHRODITE_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
- [&] {
- CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
- CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
- CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
- });
- }
|