#include "cpu_types.hpp" namespace { template struct KernelVecType { using q_load_vec_type = void; using q_vec_type = void; using k_load_vec_type = void; using k_vec_type = void; using qk_acc_vec_type = void; using v_load_vec_type = void; }; template <> struct KernelVecType { using q_load_vec_type = vec_op::FP32Vec4; using q_vec_type = vec_op::FP32Vec16; using k_load_vec_type = vec_op::FP32Vec16; using k_vec_type = vec_op::FP32Vec16; using qk_acc_vec_type = vec_op::FP32Vec16; using v_load_vec_type = vec_op::FP32Vec16; }; #ifdef __AVX512BF16__ template <> struct KernelVecType { using q_load_vec_type = vec_op::BF16Vec8; using q_vec_type = vec_op::BF16Vec32; using k_load_vec_type = vec_op::BF16Vec32; using k_vec_type = vec_op::BF16Vec32; using qk_acc_vec_type = vec_op::FP32Vec16; using v_load_vec_type = vec_op::BF16Vec16; }; #else template <> struct KernelVecType { using q_load_vec_type = vec_op::BF16Vec8; using q_vec_type = vec_op::FP32Vec16; using k_load_vec_type = vec_op::BF16Vec16; using k_vec_type = vec_op::FP32Vec16; using qk_acc_vec_type = vec_op::FP32Vec16; using v_load_vec_type = vec_op::BF16Vec16; }; #endif template FORCE_INLINE std::pair reduceSoftmax(T *data, const int size, const int capacity) { T max = data[0]; for (int i = 1; i < size; ++i) { max = max >= data[i] ? max : data[i]; } T sum = 0; for (int i = 0; i < size; ++i) { data[i] = std::exp(data[i] - max); sum += data[i]; } int i = 0; for (; i < size; ++i) { data[i] /= sum; } for (; i < capacity; ++i) { data[i] = 0; } return {max, sum}; } template FORCE_INLINE std::pair reduceSoftmaxAlibi(T *data, const int size, const int capacity, const float alibi_slope, const int start_index, const int context_len) { data[0] += alibi_slope * (start_index - context_len + 1); T max = data[0]; for (int i = 1; i < size; ++i) { T qk = data[i] + alibi_slope * (start_index + i - context_len + 1); data[i] = qk; max = max >= qk ? max : qk; } T sum = 0; for (int i = 0; i < size; ++i) { data[i] = std::exp(data[i] - max); sum += data[i]; } int i = 0; for (; i < size; ++i) { data[i] /= sum; } for (; i < capacity; ++i) { data[i] = 0; } return {max, sum}; } template FORCE_INLINE void reducePartitonSoftmax(const T *max_data, T *sum_data, const int size) { T max = max_data[0]; for (int i = 1; i < size; ++i) { max = max >= max_data[i] ? max : max_data[i]; } T rescaled_sum = 0; for (int i = 0; i < size; ++i) { T rescale_factor = std::exp(max_data[i] - max); rescaled_sum += rescale_factor * sum_data[i]; sum_data[i] *= rescale_factor; } for (int i = 0; i < size; ++i) { sum_data[i] /= rescaled_sum + 1e-8; } } template struct reduceQKBlockKernel { using q_load_vec_type = typename KernelVecType::q_load_vec_type; using q_vec_type = typename KernelVecType::q_vec_type; using k_load_vec_type = typename KernelVecType::k_load_vec_type; using k_vec_type = typename KernelVecType::k_vec_type; using qk_acc_vec_type = typename KernelVecType::qk_acc_vec_type; constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x; constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP; constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4; static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4); static_assert(k_load_vec_type::get_elem_num() % x == 0); static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16); FORCE_INLINE static void call(const scalar_t *__restrict__ q, const scalar_t *__restrict__ k_block, float *__restrict__ logits, float scale, const int token_num) { const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP; qk_acc_vec_type group_accums[MAX_GROUP_NUM]; if (token_num == BLOCK_SIZE) { for (int q_offset = 0; q_offset < HEAD_SIZE; q_offset += x, k_block += x * BLOCK_SIZE) { q_load_vec_type q_load_group_vec(q + q_offset); q_vec_type q_group_vec(q_load_group_vec); vec_op::unroll_loop( [k_block, &q_group_vec, &group_accums](int token_group_idx) { k_load_vec_type k_load_group_vec(k_block + token_group_idx * x * TOKEN_PER_GROUP); k_vec_type k_group_vec(k_load_group_vec); vec_op::fma(group_accums[token_group_idx], q_group_vec, k_group_vec); vec_op::prefetch(k_block + x * BLOCK_SIZE + token_group_idx * x * TOKEN_PER_GROUP); }); } } else { for (int q_offset = 0; q_offset < HEAD_SIZE; q_offset += x, k_block += x * BLOCK_SIZE) { q_load_vec_type q_load_group_vec(q + q_offset); q_vec_type q_group_vec(q_load_group_vec); for (int token_group_start = 0; token_group_start < group_num; token_group_start += UNROLL_GROUP_NUM) { vec_op::unroll_loop( [token_group_start, k_block, &q_group_vec, &group_accums](int token_group_idx) { token_group_idx += token_group_start; k_load_vec_type k_load_group_vec(k_block + token_group_idx * x * TOKEN_PER_GROUP); k_vec_type k_group_vec(k_load_group_vec); vec_op::fma(group_accums[token_group_idx], q_group_vec, k_group_vec); vec_op::prefetch(k_block + x * BLOCK_SIZE + token_group_idx * x * TOKEN_PER_GROUP); }); } } } for (int token_group_idx = 0; token_group_idx < group_num; ++token_group_idx) { vec_op::unroll_loop( [&group_accums, logits, scale, token_group_idx](int token_idx) { float dot_v = group_accums[token_group_idx] .template reduce_sub_sum(token_idx); logits[token_group_idx * TOKEN_PER_GROUP + token_idx] = dot_v * scale; }); } } }; template FORCE_INLINE void reduceValueBlock(const float *prob, const scalar_t *v_block, acc_t &&acc) { using v_load_vec_type = typename KernelVecType::v_load_vec_type; constexpr int ELEM_NUM = v_load_vec_type::get_elem_num(); static_assert(BLOCK_SIZE == ELEM_NUM); vec_op::FP32Vec16 prob_vec(prob); vec_op::unroll_loop([&](int head_elem_idx) { v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx); vec_op::FP32Vec16 fp32_v_vec(v_vec); acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec; }); } }; // namespace // Paged attention v1 namespace { template struct paged_attention_v1_impl { static void call(scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size] const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size] const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads, // head_size/x, block_size, x] const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads, // head_size, block_size] const int num_kv_heads, const float scale, const int *__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq] const int *__restrict__ context_lens, // [num_seqs] const int max_num_blocks_per_seq, const float *__restrict__ alibi_slopes, // [num_heads] const int q_stride, const int kv_block_stride, const int kv_head_stride, const int num_seqs, const int num_heads) { constexpr int x = 16 / sizeof(scalar_t); const int num_queries_per_kv = num_heads / num_kv_heads; static_assert(BLOCK_SIZE == 16); int max_context_len = max_num_blocks_per_seq * BLOCK_SIZE; int max_context_len_padded = (max_context_len + 15) & 0xFFFFFFF0; TORCH_CHECK((max_context_len_padded * sizeof(float)) % 64 == 0); const int parallel_work_item_num = omp_get_max_threads(); size_t logits_bytes = parallel_work_item_num * max_context_len_padded * sizeof(float); float *logits = (float *)std::aligned_alloc( 64, logits_bytes); // Cacheline alignment for each context token. // [parallel_work_item_num, max_context_len_padded] #pragma omp parallel for collapse(2) schedule(dynamic, 1) for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) { for (int head_idx = 0; head_idx < num_heads; ++head_idx) { int context_len = context_lens[seq_idx]; const int *seq_block_table = block_tables + max_num_blocks_per_seq * seq_idx; const int block_num = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE; const int64_t kv_head_idx = head_idx / num_queries_per_kv; const scalar_t *__restrict__ q_vec_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE; const int last_block_token_num = context_len - (block_num - 1) * BLOCK_SIZE; float *__restrict__ thread_block_logits = logits + omp_get_thread_num() * max_context_len_padded; // Compute logits for (int block_idx = 0; block_idx < block_num; ++block_idx) { const int64_t physical_block_idx = seq_block_table[block_idx]; const scalar_t *__restrict__ k_block_cache_ptr = k_cache + physical_block_idx * kv_block_stride + kv_head_idx * kv_head_stride; float *__restrict__ head_block_logits = thread_block_logits + block_idx * BLOCK_SIZE; reduceQKBlockKernel::call( q_vec_ptr, k_block_cache_ptr, head_block_logits, scale, block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE); } // Compute softmax if (alibi_slopes) { reduceSoftmaxAlibi(thread_block_logits, context_len, block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0, context_len); } else { reduceSoftmax(thread_block_logits, context_len, block_num * BLOCK_SIZE); } // Compute value constexpr int head_elem_num_per_partition = 16; constexpr int head_partition_num = HEAD_SIZE / head_elem_num_per_partition; for (int head_part_idx = 0; head_part_idx < head_partition_num; ++head_part_idx) { vec_op::FP32Vec16 accums[head_elem_num_per_partition]; scalar_t *__restrict__ out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE + head_part_idx * head_elem_num_per_partition; for (int block_idx = 0; block_idx < block_num; ++block_idx) { const int64_t physical_block_idx = seq_block_table[block_idx]; const float *__restrict__ prob_vec_ptr = thread_block_logits + block_idx * BLOCK_SIZE; const scalar_t *__restrict__ v_block_cache_ptr = v_cache + physical_block_idx * kv_block_stride + kv_head_idx * kv_head_stride + BLOCK_SIZE * head_part_idx * head_elem_num_per_partition; reduceValueBlock( prob_vec_ptr, v_block_cache_ptr, accums); if (block_idx != block_num - 1) { const int64_t next_physical_block_idx = seq_block_table[block_idx + 1]; const scalar_t *__restrict__ next_v_block_cache_ptr = v_cache + next_physical_block_idx * kv_block_stride + kv_head_idx * kv_head_stride + BLOCK_SIZE * head_part_idx * head_elem_num_per_partition; vec_op::unroll_loop( [&](int head_elem_idx) { if (head_elem_idx % 2 == 0) { vec_op::prefetch(next_v_block_cache_ptr + BLOCK_SIZE * head_elem_idx); } }); } } vec_op::unroll_loop( [&](int head_elem_idx) { float value = accums[head_elem_idx].reduce_sum(); vec_op::storeFP32(value, out_ptr + head_elem_idx); }); } } } std::free(logits); } }; #define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \ paged_attention_v1_impl::call( \ out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \ block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \ alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \ num_heads); template void paged_attention_v1_impl_launcher( torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache, torch::Tensor &value_cache, int num_kv_heads, float scale, torch::Tensor &block_tables, torch::Tensor &context_lens, int max_context_len, const c10::optional &alibi_slopes) { int num_seqs = query.size(0); int num_heads = query.size(1); int head_size = query.size(2); int max_num_blocks_per_seq = block_tables.size(1); int q_stride = query.stride(0); int kv_block_stride = key_cache.stride(0); int kv_head_stride = key_cache.stride(1); // NOTE: alibi_slopes is optional. const float *alibi_slopes_ptr = alibi_slopes ? reinterpret_cast(alibi_slopes.value().data_ptr()) : nullptr; T *out_ptr = reinterpret_cast(out.data_ptr()); T *query_ptr = reinterpret_cast(query.data_ptr()); T *key_cache_ptr = reinterpret_cast(key_cache.data_ptr()); T *value_cache_ptr = reinterpret_cast(value_cache.data_ptr()); int *block_tables_ptr = block_tables.data_ptr(); int *context_lens_ptr = context_lens.data_ptr(); switch (head_size) { case 64: LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE); break; case 80: LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE); break; case 96: LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE); break; case 112: LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE); break; case 128: LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE); break; case 256: LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE); break; default: TORCH_CHECK(false, "Unsupported head size: ", head_size); break; } } #define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \ paged_attention_v1_impl_launcher( \ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \ context_lens, max_context_len, alibi_slopes); #define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \ switch (block_size) { \ case 16: \ CALL_V1_KERNEL_LAUNCHER(T, 16); \ break; \ default: \ TORCH_CHECK(false, "Unsupported block size: ", block_size); \ break; \ } } // namespace void paged_attention_v1(torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache, torch::Tensor &value_cache, int num_kv_heads, float scale, torch::Tensor &block_tables, torch::Tensor &context_lens, int block_size, int max_context_len, const c10::optional &alibi_slopes, const std::string &kv_cache_dtype, float kv_scale) { TORCH_CHECK(kv_scale == 1.0f); APHRODITE_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl", [&] { CPU_KERNEL_GUARD_IN(paged_attention_v1_impl) CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t); CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl) }); } // Paged attention v2 namespace { template struct paged_attention_v2_impl { static void call( scalar_t *__restrict__ out, // [num_seqs, num_heads, head_size] float *__restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions] float *__restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions] scalar_t *__restrict__ tmp_out, // [num_seqs, num_heads, // max_num_partitions, head_size] const scalar_t *__restrict__ q, // [num_seqs, num_heads, head_size] const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads, // head_size/x, block_size, x] const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads, // head_size, block_size] const int num_kv_heads, const float scale, const int *__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq] const int *__restrict__ context_lens, // [num_seqs] const int max_num_blocks_per_seq, const float *__restrict__ alibi_slopes, // [num_heads] const int q_stride, const int kv_block_stride, const int kv_head_stride, const int num_seqs, const int num_heads, const int max_num_partitions) { constexpr int x = 16 / sizeof(scalar_t); const int num_queries_per_kv = num_heads / num_kv_heads; static_assert(BLOCK_SIZE == 16); static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0); static_assert(PARTITION_SIZE % BLOCK_SIZE == 0); #pragma omp parallel for collapse(3) schedule(static, 1) for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) { for (int partition_idx = 0; partition_idx < max_num_partitions; ++partition_idx) { for (int head_idx = 0; head_idx < num_heads; ++head_idx) { const int context_len = context_lens[seq_idx]; const int start_token_idx = partition_idx * PARTITION_SIZE; if (start_token_idx >= context_len) continue; const int partition_num = (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE; const bool no_reduce = (partition_num == 1); const int context_token_num = (std::min(context_len, start_token_idx + PARTITION_SIZE) - start_token_idx); const int block_num = (context_token_num + BLOCK_SIZE - 1) / BLOCK_SIZE; const int last_block_token_num = context_token_num - (block_num - 1) * BLOCK_SIZE; const int *seq_block_table = block_tables + max_num_blocks_per_seq * seq_idx + start_token_idx / BLOCK_SIZE; const int64_t kv_head_idx = head_idx / num_queries_per_kv; const scalar_t *__restrict__ q_vec_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE; float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0}; // Compute logits for (int block_idx = 0; block_idx < block_num; ++block_idx) { const int64_t physical_block_idx = seq_block_table[block_idx]; const scalar_t *__restrict__ k_block_cache_ptr = k_cache + physical_block_idx * kv_block_stride + kv_head_idx * kv_head_stride; float *__restrict__ head_block_logits = logits + block_idx * BLOCK_SIZE; reduceQKBlockKernel::call( q_vec_ptr, k_block_cache_ptr, head_block_logits, scale, block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE); } std::pair max_and_sum; if (alibi_slopes) { max_and_sum = reduceSoftmaxAlibi( logits, context_token_num, block_num * BLOCK_SIZE, alibi_slopes[head_idx], start_token_idx, context_len); } else { max_and_sum = reduceSoftmax(logits, context_token_num, block_num * BLOCK_SIZE); } auto &&[max_logit, exp_sum] = max_and_sum; scalar_t *__restrict__ output_buffer = nullptr; if (!no_reduce) { auto idx = seq_idx * num_heads * max_num_partitions + head_idx * max_num_partitions + partition_idx; max_logits[idx] = max_logit; exp_sums[idx] = exp_sum; output_buffer = tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE + head_idx * max_num_partitions * HEAD_SIZE + partition_idx * HEAD_SIZE; } else { output_buffer = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE; } // Compute value constexpr int head_elem_num_per_partition = 16; constexpr int head_partition_num = HEAD_SIZE / head_elem_num_per_partition; for (int head_part_idx = 0; head_part_idx < head_partition_num; ++head_part_idx) { vec_op::FP32Vec16 accums[head_elem_num_per_partition]; scalar_t *__restrict__ out_ptr = output_buffer + head_part_idx * head_elem_num_per_partition; for (int block_idx = 0; block_idx < block_num; ++block_idx) { const int64_t physical_block_idx = seq_block_table[block_idx]; const float *__restrict__ prob_vec_ptr = logits + block_idx * BLOCK_SIZE; const scalar_t *__restrict__ v_block_cache_ptr = v_cache + physical_block_idx * kv_block_stride + kv_head_idx * kv_head_stride + BLOCK_SIZE * head_part_idx * head_elem_num_per_partition; reduceValueBlock( prob_vec_ptr, v_block_cache_ptr, accums); if (block_idx != block_num - 1) { const int64_t next_physical_block_idx = seq_block_table[block_idx + 1]; const scalar_t *__restrict__ next_v_block_cache_ptr = v_cache + next_physical_block_idx * kv_block_stride + kv_head_idx * kv_head_stride + BLOCK_SIZE * head_part_idx * head_elem_num_per_partition; vec_op::unroll_loop( [&](int head_elem_idx) { if (head_elem_idx % 2 == 0) { vec_op::prefetch(next_v_block_cache_ptr + BLOCK_SIZE * head_elem_idx); } }); } } vec_op::unroll_loop( [&](int head_elem_idx) { float value = accums[head_elem_idx].reduce_sum(); vec_op::storeFP32(value, out_ptr + head_elem_idx); }); } } } } // Rescale partition softmax and store the factors to exp_sums #pragma omp parallel for collapse(2) schedule(static, 1) for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) { for (int head_idx = 0; head_idx < num_heads; ++head_idx) { const int context_len = context_lens[seq_idx]; const int partition_num = (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE; if (partition_num == 1) continue; reducePartitonSoftmax( max_logits + seq_idx * num_heads * max_num_partitions + head_idx * max_num_partitions, exp_sums + seq_idx * num_heads * max_num_partitions + head_idx * max_num_partitions, partition_num); } } // Reduce values using v_load_vec_type = typename KernelVecType::v_load_vec_type; static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE); constexpr int head_elem_num_per_group = 16; // Note: didn't align with the cacheline size, due to some HEAD_SIZE // didn't align with 64 bytes static_assert(HEAD_SIZE % head_elem_num_per_group == 0); constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group; const float *__restrict__ rescale_factors = exp_sums; #pragma omp parallel for collapse(3) schedule(static, 1) for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) { for (int head_idx = 0; head_idx < num_heads; ++head_idx) { for (int group_idx = 0; group_idx < head_group_num; ++group_idx) { const int context_len = context_lens[seq_idx]; const int partition_num = (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE; if (partition_num == 1) continue; const float *__restrict__ seq_head_rescale_factors = rescale_factors + seq_idx * num_heads * max_num_partitions + head_idx * max_num_partitions; const scalar_t *__restrict__ seq_head_tmp_out = tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE + head_idx * max_num_partitions * HEAD_SIZE + group_idx * head_elem_num_per_group; scalar_t *__restrict__ seq_head_output = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE + group_idx * head_elem_num_per_group; vec_op::FP32Vec16 acc; for (int i = 0; i < partition_num; ++i) { vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]); v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE); vec_op::FP32Vec16 fp32_value(value); acc = acc + fp32_value * rescale_factor; } v_load_vec_type cast_acc(acc); cast_acc.save(seq_head_output); } } } } }; #define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \ paged_attention_v2_impl::call( \ out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \ key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \ context_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \ kv_block_stride, kv_head_stride, num_seqs, num_heads, \ max_num_partitions); template void paged_attention_v2_impl_launcher( torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits, torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache, torch::Tensor &value_cache, int num_kv_heads, float scale, torch::Tensor &block_tables, torch::Tensor &context_lens, int block_size, int max_context_len, const c10::optional &alibi_slopes) { int num_seqs = query.size(0); int num_heads = query.size(1); int head_size = query.size(2); int max_num_blocks_per_seq = block_tables.size(1); int q_stride = query.stride(0); int kv_block_stride = key_cache.stride(0); int kv_head_stride = key_cache.stride(1); int max_num_partitions = exp_sums.size(-1); // NOTE: alibi_slopes is optional. const float *alibi_slopes_ptr = alibi_slopes ? reinterpret_cast(alibi_slopes.value().data_ptr()) : nullptr; T *out_ptr = reinterpret_cast(out.data_ptr()); float *exp_sums_ptr = reinterpret_cast(exp_sums.data_ptr()); float *max_logits_ptr = reinterpret_cast(max_logits.data_ptr()); T *tmp_out_ptr = reinterpret_cast(tmp_out.data_ptr()); T *query_ptr = reinterpret_cast(query.data_ptr()); T *key_cache_ptr = reinterpret_cast(key_cache.data_ptr()); T *value_cache_ptr = reinterpret_cast(value_cache.data_ptr()); int *block_tables_ptr = block_tables.data_ptr(); int *context_lens_ptr = context_lens.data_ptr(); switch (head_size) { case 64: LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE); break; case 80: LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE); break; case 96: LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE); break; case 112: LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE); break; case 128: LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE); break; case 256: LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE); break; default: TORCH_CHECK(false, "Unsupported head size: ", head_size); break; } } #define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \ paged_attention_v2_impl_launcher( \ out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \ num_kv_heads, scale, block_tables, context_lens, block_size, \ max_context_len, alibi_slopes); #define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \ switch (block_size) { \ case 16: \ CALL_V2_KERNEL_LAUNCHER(T, 16); \ break; \ default: \ TORCH_CHECK(false, "Unsupported block size: ", block_size); \ break; \ } } // namespace void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits, torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache, torch::Tensor &value_cache, int num_kv_heads, float scale, torch::Tensor &block_tables, torch::Tensor &context_lens, int block_size, int max_context_len, const c10::optional &alibi_slopes, const std::string &kv_cache_dtype, float kv_scale) { TORCH_CHECK(kv_scale == 1.0f); APHRODITE_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl", [&] { CPU_KERNEL_GUARD_IN(paged_attention_v2_impl) CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t); CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl) }); }