1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- """Tests which cover integration of the speculative decoding framework with
- other features, e.g. cuda graphs.
- """
- import pytest
- from .conftest import run_greedy_equality_correctness_test
- @pytest.mark.parametrize(
- "common_llm_kwargs",
- [{
- # Required for spec decode.
- "use_v2_block_manager": True,
- # Verify equality when cuda graphs allowed.
- "enforce_eager": False,
- "model": "JackFram/llama-68m",
- }])
- @pytest.mark.parametrize(
- "per_test_common_llm_kwargs",
- [
- {
- # Identical models.
- "speculative_model": "JackFram/llama-68m",
- "num_speculative_tokens": 5,
- },
- ])
- @pytest.mark.parametrize("baseline_llm_kwargs", [{}])
- @pytest.mark.parametrize("test_llm_kwargs", [{}])
- @pytest.mark.parametrize("batch_size", [8])
- @pytest.mark.parametrize("output_len", [32])
- @pytest.mark.parametrize("seed", [1])
- def test_spec_decode_cuda_graph(baseline_llm_generator, test_llm_generator,
- batch_size, output_len):
- """Verify spec decode equality when cuda graphs are enabled.
- """
- run_greedy_equality_correctness_test(
- baseline_llm_generator,
- test_llm_generator,
- batch_size,
- max_output_len=output_len,
- force_output_len=True,
- )
- @pytest.mark.parametrize(
- "common_llm_kwargs",
- [{
- "model": "JackFram/llama-160m",
- # Skip cuda graph recording for fast test.
- "enforce_eager": True,
- # Required for spec decode.
- "use_v2_block_manager": True,
- }])
- @pytest.mark.parametrize("per_test_common_llm_kwargs", [
- {
- "speculative_model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
- "num_speculative_tokens": 5,
- },
- ])
- @pytest.mark.parametrize(
- "test_llm_kwargs",
- [
- # Explicitly specify draft model quantization
- {
- "speculative_model_quantization": "gptq",
- },
- # Explicitly specify GPTQ-based draft model to use marlin quantization
- {
- "speculative_model_quantization": "marlin",
- },
- # Not explicitly specify draft model quantization
- {
- "speculative_model_quantization": None,
- },
- ])
- @pytest.mark.parametrize("baseline_llm_kwargs", [{}])
- @pytest.mark.parametrize("batch_size", [2])
- @pytest.mark.parametrize("seed", [1])
- def test_speculative_model_quantization_config(baseline_llm_generator,
- test_llm_generator,
- batch_size: int):
- """Verify spec decode works well with draft model quantization configs.
- """
- run_greedy_equality_correctness_test(baseline_llm_generator,
- test_llm_generator,
- batch_size,
- max_output_len=32,
- force_output_len=True)
|