"""Tests which cover integration of the speculative decoding framework with other features, e.g. cuda graphs. """ import pytest from .conftest import run_greedy_equality_correctness_test @pytest.mark.parametrize( "common_llm_kwargs", [{ # Required for spec decode. "use_v2_block_manager": True, # Verify equality when cuda graphs allowed. "enforce_eager": False, "model": "JackFram/llama-68m", }]) @pytest.mark.parametrize( "per_test_common_llm_kwargs", [ { # Identical models. "speculative_model": "JackFram/llama-68m", "num_speculative_tokens": 5, }, ]) @pytest.mark.parametrize("baseline_llm_kwargs", [{}]) @pytest.mark.parametrize("test_llm_kwargs", [{}]) @pytest.mark.parametrize("batch_size", [8]) @pytest.mark.parametrize("output_len", [32]) @pytest.mark.parametrize("seed", [1]) def test_spec_decode_cuda_graph(baseline_llm_generator, test_llm_generator, batch_size, output_len): """Verify spec decode equality when cuda graphs are enabled. """ run_greedy_equality_correctness_test( baseline_llm_generator, test_llm_generator, batch_size, max_output_len=output_len, force_output_len=True, ) @pytest.mark.parametrize( "common_llm_kwargs", [{ "model": "JackFram/llama-160m", # Skip cuda graph recording for fast test. "enforce_eager": True, # Required for spec decode. "use_v2_block_manager": True, }]) @pytest.mark.parametrize("per_test_common_llm_kwargs", [ { "speculative_model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", "num_speculative_tokens": 5, }, ]) @pytest.mark.parametrize( "test_llm_kwargs", [ # Explicitly specify draft model quantization { "speculative_model_quantization": "gptq", }, # Explicitly specify GPTQ-based draft model to use marlin quantization { "speculative_model_quantization": "marlin", }, # Not explicitly specify draft model quantization { "speculative_model_quantization": None, }, ]) @pytest.mark.parametrize("baseline_llm_kwargs", [{}]) @pytest.mark.parametrize("batch_size", [2]) @pytest.mark.parametrize("seed", [1]) def test_speculative_model_quantization_config(baseline_llm_generator, test_llm_generator, batch_size: int): """Verify spec decode works well with draft model quantization configs. """ run_greedy_equality_correctness_test(baseline_llm_generator, test_llm_generator, batch_size, max_output_len=32, force_output_len=True)