PygmalionAI's large-scale inference engine
pygmalion.chat

It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

AlpinDale ed6717d0c0 feat: initial support for control vectors před 4 měsíci
.github b1e61268a8 bump torch to 2.3.1 před 4 měsíci
aphrodite ed6717d0c0 feat: initial support for control vectors před 4 měsíci
assets b3df2351c8 readme: update with bsz1 graph před 10 měsíci
cmake 271a680026 feat: inference support for PowerPC ISA před 5 měsíci
docker a8d10fcfee chore: add contribution guidelines + Code of Conduct (#507) před 4 měsíci
docs 9371a33e90 docs: add installation guides před 4 měsíci
examples 96d5b8cf2c fix: allow getting the chat template from a url před 4 měsíci
kernels ba371fbbbd feat: AWQ marlin kernels (#603) před 4 měsíci
tests 6c4c20652b feat: pipeline parallel support for mixtral před 4 měsíci
.clang-format 04d22bf1a9 add clang-format před 5 měsíci
.dockerignore 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) před 5 měsíci
.env f6250c5516 move dockerfiles to root; fix cpu build před 5 měsíci
.gitignore 0c17c2a8a7 chore: add commit hash, clean up engine logs před 4 měsíci
CMakeLists.txt ba371fbbbd feat: AWQ marlin kernels (#603) před 4 měsíci
CODE_OF_CONDUCT.md 9c45fe9a2a openai: fix metrics endpoint (#512) před 6 měsíci
CONTRIBUTING.md 9c45fe9a2a openai: fix metrics endpoint (#512) před 6 měsíci
Dockerfile 5f84f0651c docker: install libibverbs by default před 4 měsíci
Dockerfile.cpu a5fafaa9ce chore: add more tuning for the CPU backend via intel-openmp před 4 měsíci
Dockerfile.neuron f6250c5516 move dockerfiles to root; fix cpu build před 5 měsíci
Dockerfile.openvino 0886c361f4 feat: OpenVINO CPU backend (#576) před 4 měsíci
Dockerfile.ppc64le 271a680026 feat: inference support for PowerPC ISA před 5 měsíci
Dockerfile.rocm fa15bad2ea chore: minor AMD fixes před 4 měsíci
Dockerfile.tpu e1475fbec7 feat: MoE support with Pallas GMM kernel for TPUs před 4 měsíci
Dockerfile.xpu 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) před 5 měsíci
LICENSE 5adcb33e14 Revert license back to AGPLv3 (#38) před 1 rokem
MANIFEST.in a4a0423149 include more device requirements in manifest před 5 měsíci
README.md 949f0445de readme: update installation command před 8 měsíci
build-linux-wheel.sh 9d81716bfd [v0.5.3] Release Candidate (#388) před 8 měsíci
docker-compose.yml f6250c5516 move dockerfiles to root; fix cpu build před 5 měsíci
entrypoint.sh f6250c5516 move dockerfiles to root; fix cpu build před 5 měsíci
env.py e42a78381a feat: switch from pylint to ruff (#322) před 9 měsíci
environment.yaml b1e61268a8 bump torch to 2.3.1 před 4 měsíci
formatting.sh 04d22bf1a9 add clang-format před 5 měsíci
mypy.ini 9d81716bfd [v0.5.3] Release Candidate (#388) před 8 měsíci
patch_xformers.rocm.sh 13d850334e fix: navi support (#283) před 10 měsíci
pyproject.toml b1e61268a8 bump torch to 2.3.1 před 4 měsíci
requirements-build.txt b1e61268a8 bump torch to 2.3.1 před 4 měsíci
requirements-common.txt 79e56506d7 clean up requirements před 4 měsíci
requirements-cpu.txt 271a680026 feat: inference support for PowerPC ISA před 5 měsíci
requirements-cuda.txt ea54ffafa4 let's try this again před 4 měsíci
requirements-dev.txt 690110a051 feat: bitsandbytes quantization před 5 měsíci
requirements-neuron.txt 9d81716bfd [v0.5.3] Release Candidate (#388) před 8 měsíci
requirements-openvino.txt 5ac65d2d49 chore: bump optimum-intel před 4 měsíci
requirements-rocm.txt fa15bad2ea chore: minor AMD fixes před 4 měsíci
requirements-tpu.txt fe21123a1c feat: TPU support (#570) před 5 měsíci
requirements-xpu.txt 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) před 5 měsíci
runtime.sh cbe37e8b18 fix: speed up cuda home detection (#288) před 10 měsíci
setup.py 0c17c2a8a7 chore: add commit hash, clean up engine logs před 4 měsíci
update-runtime.sh 9d81716bfd [v0.5.3] Release Candidate (#388) před 8 měsíci

README.md

Breathing Life into Language

aphrodite

Aphrodite is the official backend engine for PygmalionAI. It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

Aphrodite builds upon and integrates the exceptional work from various projects.

The compute necessary for Aphrodite's development is provided by Arc Compute.

Features

  • Continuous Batching
  • Efficient K/V management with PagedAttention from vLLM
  • Optimized CUDA kernels for improved inference
  • Quantization support via AQLM, AWQ, Bitsandbytes, EXL2, GGUF, GPTQ, QuIP#, Smoothquant+, and SqueezeLLM
  • Distributed inference
  • Variety of sampling methods (Mirostat, Locally Typical Sampling, Tail-Free Sampling, etc)
  • 8-bit KV Cache for higher context lengths and throughput, at both FP8 and INT8 formats.

Quickstart

Install the engine:

$ pip install -U aphrodite-engine --extra-index-url https://downloads.pygmalion.chat/whl

Then launch a model:

$ aphrodite run meta-llama/Meta-Llama-3-8B-Instruct

This will create a OpenAI-compatible API server that can be accessed at port 2242 of the localhost. You can plug in the API into a UI that supports OpenAI, such as SillyTavern.

Please refer to the wiki for the full list of arguments and flags you can pass to the engine.

You can play around with the engine in the demo here:

Open In Colab

Docker

Additionally, we provide a Docker image for easy deployment. Here's a basic command to get you started:

sudo docker run -d -e MODEL_NAME="mistralai/Mistral-7B-Instruct-v0.2" -p 2242:2242 --gpus all --ipc host alpindale/aphrodite-engine

This will pull the Aphrodite Engine image (~9GiB download), and launch the engine with the Mistral-7B model at port 2242. Check here for the full list of env variables.

See here for the Compose file to use with Docker Compose.

Requirements

  • Operating System: Linux (or WSL for Windows)
  • Python: at least 3.8

For windows users, it's recommended to use tabbyAPI instead, if you do not need batching support.

Build Requirements:

  • CUDA >= 11

For supported GPUs, see here. Generally speaking, all semi-modern GPUs are supported - down to Pascal (GTX 10xx, P40, etc.)

Installation

Usage

For usage, please refer to the wiki page for detailed instructions. Aphrodite provides many different options for LLM inference, so please read through the list of options here.

Performance

Speeds vary with different GPUs, model sizes, quantization schemes, batch sizes, etc. Here are some baseline benchmarks conducted by requesting as many completions as possible from the API server.

Batch Size 1 Performance

These are the speeds a user would normally get if they request a single output with a sizable prompt and output length. Essentially, normal chatting experience.

The following results were gathered by sending a request with 8192 prompt tokens and requesting 1024 tokens with ignore_eos=True.

GPU: NVIDIA A40, Mistral 7B. Baseline is the same model loaded with text-generation-webui in FP16.

High Batch Size Performance

Work in Progress.

Notes

  1. By design, Aphrodite takes up 90% of your GPU's VRAM. If you're not serving an LLM at scale, you may want to limit the amount of memory it takes up. You can do this in the API example by launching the server with the --gpu-memory-utilization 0.6 (0.6 means 60%).

  2. You can view the full list of commands by running aphrodite run --help.

  3. Context Length extension via the RoPE method is supported for most models. Use the command-line flag --max-model-len to specify a desired context length and the engine will adjust the RoPE scaling accordingly.

  4. Please refer to the FAQ & Issues if you run into problems. If you don't find an answer there, please make an issue.

Acknowledgements

Aphrodite Engine would have not been possible without the phenomenal work of other open-source projects. Credits go to:

Contributing

Everyone is welcome to contribute. You can support the project by opening Pull Requests for new features, fixes, or general UX improvements.