123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
- # Copyright 2023 The vLLM team.
- # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only GPT-NeoX model compatible with HuggingFace weights."""
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import GPTNeoXConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.sequence import SamplerOutput
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- class GPTNeoXAttention(nn.Module):
- def __init__(
- self,
- config: GPTNeoXConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.total_num_heads = config.num_attention_heads
- self.hidden_size = config.hidden_size
- self.head_size = self.hidden_size // self.total_num_heads
- self.bias = getattr(config, "attention_bias", True)
- tensor_model_parallel_world_size = (
- get_tensor_model_parallel_world_size())
- assert self.total_num_heads % tensor_model_parallel_world_size == 0
- self.num_heads = (self.total_num_heads //
- tensor_model_parallel_world_size)
- self.query_key_value = QKVParallelLinear(
- config.hidden_size,
- self.head_size,
- self.total_num_heads,
- bias=self.bias,
- quant_config=quant_config,
- )
- self.dense = RowParallelLinear(
- config.hidden_size,
- config.hidden_size,
- bias=self.bias,
- quant_config=quant_config,
- )
- scaling = self.head_size**-0.5
- rotary_dim = int(self.head_size * config.rotary_pct)
- assert rotary_dim % 2 == 0
- rope_theta = getattr(config, "rope_theta", 10000)
- max_position_embeddings = getattr(config, "max_position_embeddings",
- 8192)
- self.rotary_emb = get_rope(
- self.head_size,
- rotary_dim=rotary_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- )
- self.attn = Attention(self.num_heads, self.head_size, scaling)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.query_key_value(hidden_states)
- q, k, v = qkv.chunk(chunks=3, dim=-1)
- q, k = self.rotary_emb(position_ids, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.dense(attn_output)
- return output
- class GPTNeoXMLP(nn.Module):
- def __init__(
- self,
- config: GPTNeoXConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.dense_h_to_4h = ColumnParallelLinear(
- config.hidden_size,
- config.intermediate_size,
- quant_config=quant_config,
- )
- self.dense_4h_to_h = RowParallelLinear(
- config.intermediate_size,
- config.hidden_size,
- quant_config=quant_config,
- )
- quant_config = getattr(quant_config, "quant_config", None)
- self.act = get_act_fn(config.hidden_act, quant_config,
- config.intermediate_size)
- def forward(self, hidden_states):
- hidden_states, _ = self.dense_h_to_4h(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states, _ = self.dense_4h_to_h(hidden_states)
- return hidden_states
- class GPTNeoXLayer(nn.Module):
- def __init__(
- self,
- config: GPTNeoXConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.use_parallel_residual = config.use_parallel_residual
- self.input_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- self.attention = GPTNeoXAttention(config, quant_config)
- self.mlp = GPTNeoXMLP(config, quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- attn_input = self.input_layernorm(hidden_states)
- attn_output = self.attention(
- position_ids=position_ids,
- hidden_states=attn_input,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- if self.use_parallel_residual:
- # pseudocode:
- # x = x + attn(ln1(x)) + mlp(ln2(x))
- mlp_input = self.post_attention_layernorm(hidden_states)
- mlp_output = self.mlp(mlp_input)
- hidden_states = mlp_output + attn_output + hidden_states
- else:
- # pseudocode:
- # x = x + attn(ln1(x))
- # x = x + mlp(ln2(x))
- attn_output = attn_output + hidden_states
- mlp_input = self.post_attention_layernorm(attn_output)
- mlp_output = self.mlp(mlp_input)
- hidden_states = mlp_output + attn_output
- return hidden_states
- class GPTNeoXModel(nn.Module):
- def __init__(
- self,
- config: GPTNeoXConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.embed_in = VocabParallelEmbedding(
- config.vocab_size,
- config.hidden_size,
- )
- self.layers = nn.ModuleList([
- GPTNeoXLayer(config, quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- self.final_layer_norm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.embed_in(input_ids)
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states = layer(
- position_ids,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.final_layer_norm(hidden_states)
- return hidden_states
- class GPTNeoXForCausalLM(nn.Module):
- def __init__(
- self,
- config,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.gpt_neox = GPTNeoXModel(config, quant_config)
- self.embed_out = ParallelLMHead(
- config.vocab_size,
- config.hidden_size,
- )
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.gpt_neox(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.embed_out.weight, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- if ("attention.bias" in name or "attention.masked_bias" in name
- or "rotary_emb.inv_freq" in name):
- continue
- if ("rotary_emb.cos_cached" in name
- or "rotary_emb.sin_cached" in name):
- # Models trained using OpenRLHF may include
- # these tensors in the checkpoint. Skip them.
- continue
- param = params_dict[name]
- if "query_key_value" in name:
- # NOTE: GPT-NeoX's fused QKV's output_dim has the shape of
- # (num_heads * 3 * head_size), while the
- # required shape is (3 * num_heads * head_size).
- # Thus, we need weight conversion.
- output_dim = getattr(param, "output_dim", None)
- num_heads = self.config.num_attention_heads
- if output_dim is not None:
- loaded_weight_shape = loaded_weight.shape
- loaded_weight = loaded_weight.view(
- loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
- loaded_weight_shape[output_dim + 1:])
- loaded_weight = loaded_weight.transpose(
- output_dim, output_dim + 1)
- loaded_weight = loaded_weight.reshape(loaded_weight_shape)
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|