# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPT-NeoX model compatible with HuggingFace weights.""" from typing import Iterable, List, Optional, Tuple import torch from torch import nn from transformers import GPTNeoXConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.sequence import SamplerOutput from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class GPTNeoXAttention(nn.Module): def __init__( self, config: GPTNeoXConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.total_num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.total_num_heads self.bias = getattr(config, "attention_bias", True) tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = (self.total_num_heads // tensor_model_parallel_world_size) self.query_key_value = QKVParallelLinear( config.hidden_size, self.head_size, self.total_num_heads, bias=self.bias, quant_config=quant_config, ) self.dense = RowParallelLinear( config.hidden_size, config.hidden_size, bias=self.bias, quant_config=quant_config, ) scaling = self.head_size**-0.5 rotary_dim = int(self.head_size * config.rotary_pct) assert rotary_dim % 2 == 0 rope_theta = getattr(config, "rope_theta", 10000) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.rotary_emb = get_rope( self.head_size, rotary_dim=rotary_dim, max_position=max_position_embeddings, base=rope_theta, ) self.attn = Attention(self.num_heads, self.head_size, scaling) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.query_key_value(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(position_ids, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.dense(attn_output) return output class GPTNeoXMLP(nn.Module): def __init__( self, config: GPTNeoXConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.dense_h_to_4h = ColumnParallelLinear( config.hidden_size, config.intermediate_size, quant_config=quant_config, ) self.dense_4h_to_h = RowParallelLinear( config.intermediate_size, config.hidden_size, quant_config=quant_config, ) quant_config = getattr(quant_config, "quant_config", None) self.act = get_act_fn(config.hidden_act, quant_config, config.intermediate_size) def forward(self, hidden_states): hidden_states, _ = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.dense_4h_to_h(hidden_states) return hidden_states class GPTNeoXLayer(nn.Module): def __init__( self, config: GPTNeoXConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = GPTNeoXAttention(config, quant_config) self.mlp = GPTNeoXMLP(config, quant_config) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: attn_input = self.input_layernorm(hidden_states) attn_output = self.attention( position_ids=position_ids, hidden_states=attn_input, kv_cache=kv_cache, attn_metadata=attn_metadata, ) if self.use_parallel_residual: # pseudocode: # x = x + attn(ln1(x)) + mlp(ln2(x)) mlp_input = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(mlp_input) hidden_states = mlp_output + attn_output + hidden_states else: # pseudocode: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) attn_output = attn_output + hidden_states mlp_input = self.post_attention_layernorm(attn_output) mlp_output = self.mlp(mlp_input) hidden_states = mlp_output + attn_output return hidden_states class GPTNeoXModel(nn.Module): def __init__( self, config: GPTNeoXConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.embed_in = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList([ GPTNeoXLayer(config, quant_config) for _ in range(config.num_hidden_layers) ]) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_in(input_ids) for i in range(len(self.layers)): layer = self.layers[i] hidden_states = layer( position_ids, hidden_states, kv_caches[i], attn_metadata, ) hidden_states = self.final_layer_norm(hidden_states) return hidden_states class GPTNeoXForCausalLM(nn.Module): def __init__( self, config, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.quant_config = quant_config self.gpt_neox = GPTNeoXModel(config, quant_config) self.embed_out = ParallelLMHead( config.vocab_size, config.hidden_size, ) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.gpt_neox(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.embed_out.weight, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if ("attention.bias" in name or "attention.masked_bias" in name or "rotary_emb.inv_freq" in name): continue if ("rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name): # Models trained using OpenRLHF may include # these tensors in the checkpoint. Skip them. continue param = params_dict[name] if "query_key_value" in name: # NOTE: GPT-NeoX's fused QKV's output_dim has the shape of # (num_heads * 3 * head_size), while the # required shape is (3 * num_heads * head_size). # Thus, we need weight conversion. output_dim = getattr(param, "output_dim", None) num_heads = self.config.num_attention_heads if output_dim is not None: loaded_weight_shape = loaded_weight.shape loaded_weight = loaded_weight.view( loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + loaded_weight_shape[output_dim + 1:]) loaded_weight = loaded_weight.transpose( output_dim, output_dim + 1) loaded_weight = loaded_weight.reshape(loaded_weight_shape) weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)