123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- from typing import List, Optional, Set, Tuple, Type
- from torch import nn
- from transformers import PretrainedConfig
- from aphrodite.common.config import LoRAConfig
- from aphrodite.lora.fully_sharded_layers import (
- ColumnParallelLinearWithShardedLoRA,
- MergedColumnParallelLinearWithShardedLoRA,
- MergedQKVParallelLinearWithShardedLora, RowParallelLinearWithShardedLoRA)
- # being imported for _all_lora_classes below
- # yapf conflicts with isort for this block
- # yapf: disable
- from aphrodite.lora.layers import (BaseLayerWithLoRA,
- ColumnParallelLinearWithLoRA,
- LinearScalingRotaryEmbeddingWithLora,
- LogitsProcessorWithLoRA,
- MergedColumnParallelLinearWithLoRA,
- MergedQKVParallelLinearWithLora,
- QKVParallelLinearWithLora,
- RowParallelLinearWithLoRA,
- VocabParallelEmbeddingWithLoRA)
- # yapf: enable
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead
- _all_lora_classes: Set[Type[BaseLayerWithLoRA]] = {
- VocabParallelEmbeddingWithLoRA,
- ColumnParallelLinearWithLoRA,
- MergedColumnParallelLinearWithLoRA,
- QKVParallelLinearWithLora,
- MergedQKVParallelLinearWithLora,
- RowParallelLinearWithLoRA,
- LogitsProcessorWithLoRA,
- ColumnParallelLinearWithShardedLoRA,
- MergedColumnParallelLinearWithShardedLoRA,
- MergedQKVParallelLinearWithShardedLora,
- RowParallelLinearWithShardedLoRA,
- LinearScalingRotaryEmbeddingWithLora,
- }
- def from_layer(layer: nn.Module,
- max_loras: int,
- lora_config: LoRAConfig,
- packed_modules_list: List,
- model_config: Optional[PretrainedConfig] = None) -> nn.Module:
- for lora_cls in _all_lora_classes:
- # specifying kwargs so they can be easily accessed in decorator
- if lora_cls.can_replace_layer(source_layer=layer,
- lora_config=lora_config,
- packed_modules_list=packed_modules_list,
- model_config=model_config):
- ret = lora_cls(layer)
- ret.create_lora_weights(max_loras, lora_config, model_config)
- return ret
- return layer
- def from_layer_logits_processor(
- layer: LogitsProcessor,
- lm_head: ParallelLMHead,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None,
- ) -> LogitsProcessorWithLoRA:
- ret = LogitsProcessorWithLoRA(layer, lm_head.embedding_dim,
- lm_head.weight.dtype, lm_head.weight.device)
- ret.create_lora_weights(max_loras, lora_config, model_config)
- return ret
- def replace_submodule(model: nn.Module, module_name: str,
- new_module: nn.Module) -> nn.Module:
- """Replace a submodule in a model with a new module."""
- parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
- target_name = module_name.split(".")[-1]
- setattr(parent, target_name, new_module)
- return new_module
- def parse_fine_tuned_lora_name(name: str) -> Tuple[str, bool]:
- """Parse the name of lora weights.
- args:
- name: the name of the fine-tuned LoRA, e.g.
- base_model.model.dense1.weight
- return:
- Tuple(module_name, is_lora_a):
- module_name: the name of the module, e.g. model.dense1,
- is_lora_a whether the tensor is lora_a or lora_b.
- """
- parts = name.split(".")
- assert parts[0] == "base_model"
- assert parts[1] == "model"
- if parts[-1] == "weight":
- assert parts[-2] == "lora_A" or parts[-2] == "lora_B"
- return ".".join(parts[2:-2]), parts[-2] == "lora_A"
- if parts[-1] == "lora_embedding_A" or parts[-1] == "lora_embedding_B":
- return ".".join(parts[2:-1]), parts[-1] == "lora_embedding_A"
- raise ValueError(f"{name} is unsupported format")
|