from typing import List, Optional, Set, Tuple, Type from torch import nn from transformers import PretrainedConfig from aphrodite.common.config import LoRAConfig from aphrodite.lora.fully_sharded_layers import ( ColumnParallelLinearWithShardedLoRA, MergedColumnParallelLinearWithShardedLoRA, MergedQKVParallelLinearWithShardedLora, RowParallelLinearWithShardedLoRA) # being imported for _all_lora_classes below # yapf conflicts with isort for this block # yapf: disable from aphrodite.lora.layers import (BaseLayerWithLoRA, ColumnParallelLinearWithLoRA, LinearScalingRotaryEmbeddingWithLora, LogitsProcessorWithLoRA, MergedColumnParallelLinearWithLoRA, MergedQKVParallelLinearWithLora, QKVParallelLinearWithLora, RowParallelLinearWithLoRA, VocabParallelEmbeddingWithLoRA) # yapf: enable from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead _all_lora_classes: Set[Type[BaseLayerWithLoRA]] = { VocabParallelEmbeddingWithLoRA, ColumnParallelLinearWithLoRA, MergedColumnParallelLinearWithLoRA, QKVParallelLinearWithLora, MergedQKVParallelLinearWithLora, RowParallelLinearWithLoRA, LogitsProcessorWithLoRA, ColumnParallelLinearWithShardedLoRA, MergedColumnParallelLinearWithShardedLoRA, MergedQKVParallelLinearWithShardedLora, RowParallelLinearWithShardedLoRA, LinearScalingRotaryEmbeddingWithLora, } def from_layer(layer: nn.Module, max_loras: int, lora_config: LoRAConfig, packed_modules_list: List, model_config: Optional[PretrainedConfig] = None) -> nn.Module: for lora_cls in _all_lora_classes: # specifying kwargs so they can be easily accessed in decorator if lora_cls.can_replace_layer(source_layer=layer, lora_config=lora_config, packed_modules_list=packed_modules_list, model_config=model_config): ret = lora_cls(layer) ret.create_lora_weights(max_loras, lora_config, model_config) return ret return layer def from_layer_logits_processor( layer: LogitsProcessor, lm_head: ParallelLMHead, max_loras: int, lora_config: LoRAConfig, model_config: Optional[PretrainedConfig] = None, ) -> LogitsProcessorWithLoRA: ret = LogitsProcessorWithLoRA(layer, lm_head.embedding_dim, lm_head.weight.dtype, lm_head.weight.device) ret.create_lora_weights(max_loras, lora_config, model_config) return ret def replace_submodule(model: nn.Module, module_name: str, new_module: nn.Module) -> nn.Module: """Replace a submodule in a model with a new module.""" parent = model.get_submodule(".".join(module_name.split(".")[:-1])) target_name = module_name.split(".")[-1] setattr(parent, target_name, new_module) return new_module def parse_fine_tuned_lora_name(name: str) -> Tuple[str, bool]: """Parse the name of lora weights. args: name: the name of the fine-tuned LoRA, e.g. base_model.model.dense1.weight return: Tuple(module_name, is_lora_a): module_name: the name of the module, e.g. model.dense1, is_lora_a whether the tensor is lora_a or lora_b. """ parts = name.split(".") assert parts[0] == "base_model" assert parts[1] == "model" if parts[-1] == "weight": assert parts[-2] == "lora_A" or parts[-2] == "lora_B" return ".".join(parts[2:-2]), parts[-2] == "lora_A" if parts[-1] == "lora_embedding_A" or parts[-1] == "lora_embedding_B": return ".".join(parts[2:-1]), parts[-1] == "lora_embedding_A" raise ValueError(f"{name} is unsupported format")