NOTE: This is a guide to performing batch inference using the OpenAI batch file format, NOT the complete Batch (REST) API.
## File Format
The OpenAI batch file format consists of a series of json objects on new lines.
Each line represents a separate request. See the OpenAI package reference for more details.
NOTE: We currently only support to /v1/chat/completions
endpoint (embeddings and completions coming soon).
## Pre-requisites
aphrodite > 0.5.2
. You can check by running python -c "import aphrodite; print(aphrodite.__version__)"
.NousResearch/Meta-Llama-3.1-8B-Instruct
.## Example: Running with a local file
### Step 1: Create your batch file
To follow along with this example, you can download the example batch, or create your own batch file in your working directory.
wget https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl
Once you've created your batch file it should look like this
$ cat batched_example.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
### Step 2: Run the batch
The batch running tool is designed to be used from the command line.
You can run the batch with the following command, which will write its results to a file called results.jsonl
python -m aphrodite.endpoints.openai.run_batch -i batched_example.jsonl -o results.jsonl --model NousResearch/Meta-Llama-3.1-8B-Instruct
You should now have your results at results.jsonl
. You can check your results by running cat results.jsonl
$ cat ../results.jsonl
{"id":"aphrodite-383d1c59835645aeb2e07d004d62a826","custom_id":"request-1","response":{"id":"cmpl-61c020e54b964d5a98fa7527bfcdd378","object":"chat.completion","created":1715633336,"model":"NousResearch/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"Hello! It's great to meet you! I'm here to help with any questions or tasks you may have. What's on your mind today?"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":25,"total_tokens":56,"completion_tokens":31}},"error":null}
{"id":"aphrodite-42e3d09b14b04568afa3f1797751a267","custom_id":"request-2","response":{"id":"cmpl-f44d049f6b3a42d4b2d7850bb1e31bcc","object":"chat.completion","created":1715633336,"model":"NousResearch/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"*silence*"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":27,"total_tokens":32,"completion_tokens":5}},"error":null}
The batch runner supports remote input and output urls that are accessible via http/https.
For example, to run against our example input file located at https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl
, you can run
python -m aphrodite.endpoints.openai.run_batch -i https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl -o results.jsonl --model NousResearch/Meta-Llama-3.1-8B-Instruct
To integrate with cloud blob storage, we recommend using presigned urls.
[Learn more about S3 presigned urls here]
awscli
package (Run pip install awscli
) to configure your credentials and interactively use s3.
boto3
python package (Run pip install boto3
) to generate presigned urls.To follow along with this example, you can download the example batch, or create your own batch file in your working directory.
wget https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl
Once you've created your batch file it should look like this
$ cat batched_example.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
Now upload your batch file to your S3 bucket.
aws s3 cp batched_example.jsonl s3://MY_BUCKET/MY_INPUT_FILE.jsonl
Presigned put urls can only be generated via the SDK. You can run the following python script to generate your presigned urls. Be sure to replace the MY_BUCKET
, MY_INPUT_FILE.jsonl
, and MY_OUTPUT_FILE.jsonl
placeholders with your bucket and file names.
(The script is adapted from https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/s3/s3_basics/presigned_url.py)
import boto3
from botocore.exceptions import ClientError
def generate_presigned_url(s3_client, client_method, method_parameters, expires_in):
"""
Generate a presigned Amazon S3 URL that can be used to perform an action.
:param s3_client: A Boto3 Amazon S3 client.
:param client_method: The name of the client method that the URL performs.
:param method_parameters: The parameters of the specified client method.
:param expires_in: The number of seconds the presigned URL is valid for.
:return: The presigned URL.
"""
try:
url = s3_client.generate_presigned_url(
ClientMethod=client_method, Params=method_parameters, ExpiresIn=expires_in
)
except ClientError:
raise
return url
s3_client = boto3.client("s3")
input_url = generate_presigned_url(
s3_client, "get_object", {"Bucket": "MY_BUCKET", "Key": "MY_INPUT_FILE.jsonl"}, 3600
)
output_url = generate_presigned_url(
s3_client, "put_object", {"Bucket": "MY_BUCKET", "Key": "MY_OUTPUT_FILE.jsonl"}, 3600
)
print(f"{input_url=}")
print(f"{output_url=}")
This script should output
input_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
output_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
You can now run the batch runner, using the urls generated in the previous section.
python -m aphrodite.endpoints.openai.run_batch \
-i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
-o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
--model --model NousResearch/Meta-Llama-3.1-8B-Instruct
Your results are now on S3. You can view them in your terminal by running
aws s3 cp s3://MY_BUCKET/MY_OUTPUT_FILE.jsonl -