# Inference with the OpenAI Batch file format **NOTE:** This is a guide to performing batch inference using the OpenAI batch file format, **NOT** the complete Batch (REST) API. ## File Format The OpenAI batch file format consists of a series of json objects on new lines. [See here for an example file.](https://github.com/PygmalionAI/aphrodite-engine/blob/rc_054/examples/openai_api/batched_example.jsonl) Each line represents a separate request. See the [OpenAI package reference](https://platform.openai.com/docs/api-reference/batch/requestInput) for more details. **NOTE:** We currently only support to `/v1/chat/completions` endpoint (embeddings and completions coming soon). ## Pre-requisites * Ensure you are using `aphrodite > 0.5.2`. You can check by running `python -c "import aphrodite; print(aphrodite.__version__)"`. * The examples in this document use `NousResearch/Meta-Llama-3.1-8B-Instruct`. ## Example: Running with a local file ### Step 1: Create your batch file To follow along with this example, you can download the example batch, or create your own batch file in your working directory. ``` wget https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl ``` Once you've created your batch file it should look like this ``` $ cat batched_example.jsonl {"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} ``` ### Step 2: Run the batch The batch running tool is designed to be used from the command line. You can run the batch with the following command, which will write its results to a file called `results.jsonl` ``` python -m aphrodite.endpoints.openai.run_batch -i batched_example.jsonl -o results.jsonl --model NousResearch/Meta-Llama-3.1-8B-Instruct ``` ### Step 3: Check your results You should now have your results at `results.jsonl`. You can check your results by running `cat results.jsonl` ``` $ cat ../results.jsonl {"id":"aphrodite-383d1c59835645aeb2e07d004d62a826","custom_id":"request-1","response":{"id":"cmpl-61c020e54b964d5a98fa7527bfcdd378","object":"chat.completion","created":1715633336,"model":"NousResearch/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"Hello! It's great to meet you! I'm here to help with any questions or tasks you may have. What's on your mind today?"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":25,"total_tokens":56,"completion_tokens":31}},"error":null} {"id":"aphrodite-42e3d09b14b04568afa3f1797751a267","custom_id":"request-2","response":{"id":"cmpl-f44d049f6b3a42d4b2d7850bb1e31bcc","object":"chat.completion","created":1715633336,"model":"NousResearch/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"*silence*"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":27,"total_tokens":32,"completion_tokens":5}},"error":null} ``` ## Example 2: Using remote files The batch runner supports remote input and output urls that are accessible via http/https. For example, to run against our example input file located at `https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl`, you can run ``` python -m aphrodite.endpoints.openai.run_batch -i https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl -o results.jsonl --model NousResearch/Meta-Llama-3.1-8B-Instruct ``` ## Example 3: Integrating with AWS S3 To integrate with cloud blob storage, we recommend using presigned urls. [Learn more about S3 presigned urls here] ### Additional prerequisites * [Create an S3 bucket](https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html). * The `awscli` package (Run `pip install awscli`) to configure your credentials and interactively use s3. - [Configure your credentials](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html). * The `boto3` python package (Run `pip install boto3`) to generate presigned urls. ### Step 1: Upload your input script To follow along with this example, you can download the example batch, or create your own batch file in your working directory. ``` wget https://raw.githubusercontent.com/PygmalionAI/aphrodite-engine/rc_054/examples/openai_api/batched_example.jsonl ``` Once you've created your batch file it should look like this ``` $ cat batched_example.jsonl {"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3.1-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} ``` Now upload your batch file to your S3 bucket. ``` aws s3 cp batched_example.jsonl s3://MY_BUCKET/MY_INPUT_FILE.jsonl ``` ### Step 2: Generate your presigned urls Presigned put urls can only be generated via the SDK. You can run the following python script to generate your presigned urls. Be sure to replace the `MY_BUCKET`, `MY_INPUT_FILE.jsonl`, and `MY_OUTPUT_FILE.jsonl` placeholders with your bucket and file names. (The script is adapted from https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/s3/s3_basics/presigned_url.py) ``` import boto3 from botocore.exceptions import ClientError def generate_presigned_url(s3_client, client_method, method_parameters, expires_in): """ Generate a presigned Amazon S3 URL that can be used to perform an action. :param s3_client: A Boto3 Amazon S3 client. :param client_method: The name of the client method that the URL performs. :param method_parameters: The parameters of the specified client method. :param expires_in: The number of seconds the presigned URL is valid for. :return: The presigned URL. """ try: url = s3_client.generate_presigned_url( ClientMethod=client_method, Params=method_parameters, ExpiresIn=expires_in ) except ClientError: raise return url s3_client = boto3.client("s3") input_url = generate_presigned_url( s3_client, "get_object", {"Bucket": "MY_BUCKET", "Key": "MY_INPUT_FILE.jsonl"}, 3600 ) output_url = generate_presigned_url( s3_client, "put_object", {"Bucket": "MY_BUCKET", "Key": "MY_OUTPUT_FILE.jsonl"}, 3600 ) print(f"{input_url=}") print(f"{output_url=}") ``` This script should output ``` input_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091' output_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091' ``` ### Step 3: Run the batch runner using your presigned urls You can now run the batch runner, using the urls generated in the previous section. ``` python -m aphrodite.endpoints.openai.run_batch \ -i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \ -o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \ --model --model NousResearch/Meta-Llama-3.1-8B-Instruct ``` ### Step 4: View your results Your results are now on S3. You can view them in your terminal by running ``` aws s3 cp s3://MY_BUCKET/MY_OUTPUT_FILE.jsonl - ```