123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- # coding=utf-8
- # Adapted from
- # https://github.com/THUDM/ChatGLM2-6B
- """Inference-only ChatGLM model compatible with THUDM weights."""
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from torch.nn import LayerNorm
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.models.interfaces import SupportsLoRA
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.transformers_utils.configs import ChatGLMConfig
- class GLMAttention(nn.Module):
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.hidden_size = config.hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = config.num_attention_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.multi_query_attention = config.multi_query_attention
- self.total_num_kv_heads = (config.multi_query_group_num
- if config.multi_query_attention else
- config.num_attention_heads)
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- self.head_dim = config.hidden_size // self.total_num_heads
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = self.head_dim**-0.5
- self.query_key_value = QKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=config.add_bias_linear or config.add_qkv_bias,
- quant_config=quant_config,
- )
- self.dense = RowParallelLinear(
- self.total_num_heads * self.head_dim,
- config.hidden_size,
- bias=config.add_bias_linear,
- quant_config=quant_config,
- )
- # https://huggingface.co/THUDM/chatglm3-6b-32k/blob/e210410255278dd9d74463cf396ba559c0ef801c/modeling_chatglm.py#L141
- rope_ratio = getattr(config, "rope_ratio", 1.0)
- max_positions = getattr(config, "seq_length", 8192)
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim // 2,
- max_position=max_positions,
- base=10000 * rope_ratio,
- is_neox_style=False,
- )
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_ids: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.query_key_value(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- q, k = self.rotary_emb(position_ids, q, k)
- context_layer = self.attn(
- q,
- k,
- v,
- kv_cache,
- attn_metadata,
- )
- attn_output, _ = self.dense(context_layer)
- return attn_output
- class GLMMLP(nn.Module):
- """MLP.
- MLP will take the input with h hidden state, project it to 4*h
- hidden dimension, perform nonlinear transformation, and project the
- state back into h hidden dimension.
- """
- def __init__(
- self,
- config,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.add_bias = config.add_bias_linear
- # Project to 4h.
- self.dense_h_to_4h = MergedColumnParallelLinear(
- config.hidden_size,
- [config.ffn_hidden_size] * 2,
- bias=config.add_bias_linear,
- quant_config=quant_config,
- )
- self.activation_func = SiluAndMul()
- # Project back to h.
- self.dense_4h_to_h = RowParallelLinear(
- config.ffn_hidden_size,
- config.hidden_size,
- bias=config.add_bias_linear,
- quant_config=quant_config,
- )
- def forward(self, hidden_states):
- # [s, b, 4hp]
- intermediate_parallel, _ = self.dense_h_to_4h(hidden_states)
- intermediate_parallel = self.activation_func(intermediate_parallel)
- # [s, b, h]
- output, _ = self.dense_4h_to_h(intermediate_parallel)
- return output
- class GLMBlock(nn.Module):
- """A single transformer layer.
- Transformer layer takes input with size [s, b, h] and returns an
- output of the same size.
- """
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.apply_residual_connection_post_layernorm = (
- config.apply_residual_connection_post_layernorm)
- self.fp32_residual_connection = config.fp32_residual_connection
- layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
- # Layernorm on the input data.
- self.input_layernorm = layer_norm_func(config.hidden_size,
- eps=config.layernorm_epsilon)
- # Self attention.
- self.self_attention = GLMAttention(config, cache_config, quant_config)
- self.hidden_dropout = config.hidden_dropout
- # Layernorm on the attention output
- self.post_attention_layernorm = layer_norm_func(
- config.hidden_size, eps=config.layernorm_epsilon)
- # MLP
- self.mlp = GLMMLP(config, quant_config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_ids: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- # hidden_states: [num_tokens, h]
- # Layer norm at the beginning of the transformer layer.
- layernorm_output = self.input_layernorm(hidden_states)
- # Self attention.
- attention_output = self.self_attention(
- hidden_states=layernorm_output,
- position_ids=position_ids,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- # Residual connection.
- if self.apply_residual_connection_post_layernorm:
- residual = layernorm_output
- else:
- residual = hidden_states
- layernorm_input = residual + attention_output
- # Layer norm post the self attention.
- layernorm_output = self.post_attention_layernorm(layernorm_input)
- # Second residual connection.
- if self.apply_residual_connection_post_layernorm:
- residual = layernorm_output
- else:
- residual = layernorm_input
- output = self.mlp(layernorm_output) + residual
- return output
- class GLMTransformer(nn.Module):
- """Transformer class."""
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.post_layer_norm = config.post_layer_norm
- # Number of layers.
- self.num_layers = config.num_layers
- # Transformer layers.
- self.layers = nn.ModuleList([
- GLMBlock(config, cache_config, quant_config)
- for i in range(self.num_layers)
- ])
- if self.post_layer_norm:
- layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
- # Final layer norm before output.
- self.final_layernorm = layer_norm_func(
- config.hidden_size, eps=config.layernorm_epsilon)
- def forward(
- self,
- hidden_states: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- for i in range(self.num_layers):
- layer = self.layers[i]
- hidden_states = layer(
- hidden_states=hidden_states,
- position_ids=position_ids,
- kv_cache=kv_caches[i],
- attn_metadata=attn_metadata,
- )
- # Final layer norm.
- if self.post_layer_norm:
- hidden_states = self.final_layernorm(hidden_states)
- return hidden_states
- class ChatGLMModel(nn.Module):
- def __init__(
- self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.embedding = VocabParallelEmbedding(config.padded_vocab_size,
- config.hidden_size)
- self.num_layers = config.num_layers
- self.multi_query_group_num = config.multi_query_group_num
- self.kv_channels = config.kv_channels
- self.encoder = GLMTransformer(config, cache_config, quant_config)
- self.output_layer = ParallelLMHead(config.padded_vocab_size,
- config.hidden_size,
- quant_config=quant_config)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- inputs_embeds = self.embedding(input_ids)
- # Run encoder.
- hidden_states = self.encoder(
- hidden_states=inputs_embeds,
- position_ids=position_ids,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata,
- )
- return hidden_states
- class ChatGLMForCausalLM(nn.Module, SupportsLoRA):
- packed_modules_mapping = {
- "query_key_value": ["query_key_value"],
- "dense_h_to_4h": ["dense_h_to_4h"]
- }
- # LoRA specific attributes
- supported_lora_modules = [
- "query_key_value",
- "dense",
- "dense_h_to_4h",
- "dense_4h_to_h",
- ]
- embedding_modules = {}
- embedding_padding_modules = []
- def __init__(
- self,
- config: ChatGLMConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.lora_config = lora_config
- self.quant_config = quant_config
- self.max_position_embeddings = getattr(config, "max_sequence_length",
- 8192)
- self.transformer = ChatGLMModel(config, cache_config, quant_config)
- self.lm_head = self.transformer.output_layer
- self.logits_processor = LogitsProcessor(config.padded_vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- if "rotary_pos_emb.inv_freq" in name:
- continue
- if "word_embeddings" in name:
- name = name.replace(".word_embeddings", "")
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|