# coding=utf-8 # Adapted from # https://github.com/THUDM/ChatGLM2-6B """Inference-only ChatGLM model compatible with THUDM weights.""" from typing import Iterable, List, Optional, Tuple import torch from torch import nn from torch.nn import LayerNorm from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig, LoRAConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.models.interfaces import SupportsLoRA from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig from aphrodite.transformers_utils.configs import ChatGLMConfig class GLMAttention(nn.Module): def __init__( self, config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.hidden_size = config.hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = config.num_attention_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.multi_query_attention = config.multi_query_attention self.total_num_kv_heads = (config.multi_query_group_num if config.multi_query_attention else config.num_attention_heads) if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = config.hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.query_key_value = QKVParallelLinear( self.hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=config.add_bias_linear or config.add_qkv_bias, quant_config=quant_config, ) self.dense = RowParallelLinear( self.total_num_heads * self.head_dim, config.hidden_size, bias=config.add_bias_linear, quant_config=quant_config, ) # https://huggingface.co/THUDM/chatglm3-6b-32k/blob/e210410255278dd9d74463cf396ba559c0ef801c/modeling_chatglm.py#L141 rope_ratio = getattr(config, "rope_ratio", 1.0) max_positions = getattr(config, "seq_length", 8192) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim // 2, max_position=max_positions, base=10000 * rope_ratio, is_neox_style=False, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, hidden_states: torch.Tensor, position_ids: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.query_key_value(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(position_ids, q, k) context_layer = self.attn( q, k, v, kv_cache, attn_metadata, ) attn_output, _ = self.dense(context_layer) return attn_output class GLMMLP(nn.Module): """MLP. MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, and project the state back into h hidden dimension. """ def __init__( self, config, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.add_bias = config.add_bias_linear # Project to 4h. self.dense_h_to_4h = MergedColumnParallelLinear( config.hidden_size, [config.ffn_hidden_size] * 2, bias=config.add_bias_linear, quant_config=quant_config, ) self.activation_func = SiluAndMul() # Project back to h. self.dense_4h_to_h = RowParallelLinear( config.ffn_hidden_size, config.hidden_size, bias=config.add_bias_linear, quant_config=quant_config, ) def forward(self, hidden_states): # [s, b, 4hp] intermediate_parallel, _ = self.dense_h_to_4h(hidden_states) intermediate_parallel = self.activation_func(intermediate_parallel) # [s, b, h] output, _ = self.dense_4h_to_h(intermediate_parallel) return output class GLMBlock(nn.Module): """A single transformer layer. Transformer layer takes input with size [s, b, h] and returns an output of the same size. """ def __init__( self, config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.apply_residual_connection_post_layernorm = ( config.apply_residual_connection_post_layernorm) self.fp32_residual_connection = config.fp32_residual_connection layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm # Layernorm on the input data. self.input_layernorm = layer_norm_func(config.hidden_size, eps=config.layernorm_epsilon) # Self attention. self.self_attention = GLMAttention(config, cache_config, quant_config) self.hidden_dropout = config.hidden_dropout # Layernorm on the attention output self.post_attention_layernorm = layer_norm_func( config.hidden_size, eps=config.layernorm_epsilon) # MLP self.mlp = GLMMLP(config, quant_config) def forward( self, hidden_states: torch.Tensor, position_ids: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: # hidden_states: [num_tokens, h] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Self attention. attention_output = self.self_attention( hidden_states=layernorm_output, position_ids=position_ids, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Residual connection. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states layernorm_input = residual + attention_output # Layer norm post the self attention. layernorm_output = self.post_attention_layernorm(layernorm_input) # Second residual connection. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = layernorm_input output = self.mlp(layernorm_output) + residual return output class GLMTransformer(nn.Module): """Transformer class.""" def __init__( self, config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.post_layer_norm = config.post_layer_norm # Number of layers. self.num_layers = config.num_layers # Transformer layers. self.layers = nn.ModuleList([ GLMBlock(config, cache_config, quant_config) for i in range(self.num_layers) ]) if self.post_layer_norm: layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm # Final layer norm before output. self.final_layernorm = layer_norm_func( config.hidden_size, eps=config.layernorm_epsilon) def forward( self, hidden_states: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: for i in range(self.num_layers): layer = self.layers[i] hidden_states = layer( hidden_states=hidden_states, position_ids=position_ids, kv_cache=kv_caches[i], attn_metadata=attn_metadata, ) # Final layer norm. if self.post_layer_norm: hidden_states = self.final_layernorm(hidden_states) return hidden_states class ChatGLMModel(nn.Module): def __init__( self, config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.embedding = VocabParallelEmbedding(config.padded_vocab_size, config.hidden_size) self.num_layers = config.num_layers self.multi_query_group_num = config.multi_query_group_num self.kv_channels = config.kv_channels self.encoder = GLMTransformer(config, cache_config, quant_config) self.output_layer = ParallelLMHead(config.padded_vocab_size, config.hidden_size, quant_config=quant_config) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: inputs_embeds = self.embedding(input_ids) # Run encoder. hidden_states = self.encoder( hidden_states=inputs_embeds, position_ids=position_ids, kv_caches=kv_caches, attn_metadata=attn_metadata, ) return hidden_states class ChatGLMForCausalLM(nn.Module, SupportsLoRA): packed_modules_mapping = { "query_key_value": ["query_key_value"], "dense_h_to_4h": ["dense_h_to_4h"] } # LoRA specific attributes supported_lora_modules = [ "query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h", ] embedding_modules = {} embedding_padding_modules = [] def __init__( self, config: ChatGLMConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ): super().__init__() self.config = config self.lora_config = lora_config self.quant_config = quant_config self.max_position_embeddings = getattr(config, "max_sequence_length", 8192) self.transformer = ChatGLMModel(config, cache_config, quant_config) self.lm_head = self.transformer.output_layer self.logits_processor = LogitsProcessor(config.padded_vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters(remove_duplicate=False)) for name, loaded_weight in weights: if "rotary_pos_emb.inv_freq" in name: continue if "word_embeddings" in name: name = name.replace(".word_embeddings", "") # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)