123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- from typing import Dict, List, Set, Tuple
- from loguru import logger
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- from aphrodite.common.utils import (get_distributed_init_method, get_ip,
- get_open_port, make_async)
- from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase
- from aphrodite.lora.request import LoRARequest
- class GPUExecutor(ExecutorBase):
- def _init_executor(self) -> None:
- """Initialize the worker and load the model.
- If speculative decoding is enabled, we instead create the speculative
- worker.
- """
- if self.speculative_config is None:
- self._init_non_spec_worker()
- else:
- self._init_spec_worker()
- def _init_non_spec_worker(self):
- # Lazy import the Worker to avoid importing torch.cuda/xformers
- # before CUDA_VISIBLE_DEVICES is set in the Worker
- from aphrodite.task_handler.worker import Worker
- assert self.parallel_config.world_size == 1, (
- "GPUExecutor only supports single GPU.")
- distributed_init_method = get_distributed_init_method(
- get_ip(), get_open_port())
- self.driver_worker = Worker(
- model_config=self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config,
- device_config=self.device_config,
- cache_config=self.cache_config,
- load_config=self.load_config,
- local_rank=0,
- rank=0,
- distributed_init_method=distributed_init_method,
- lora_config=self.lora_config,
- vision_language_config=self.vision_language_config,
- is_driver_worker=True,
- )
- self.driver_worker.init_device()
- self.driver_worker.load_model()
- def _init_spec_worker(self):
- """Initialize a SpecDecodeWorker, using a draft model for proposals.
- """
- assert self.speculative_config is not None
- from aphrodite.spec_decode.multi_step_worker import MultiStepWorker
- from aphrodite.spec_decode.spec_decode_worker import SpecDecodeWorker
- from aphrodite.task_handler.worker import Worker
- distributed_init_method = get_distributed_init_method(
- get_ip(), get_open_port())
- target_worker = Worker(
- model_config=self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config,
- device_config=self.device_config,
- cache_config=self.cache_config,
- load_config=self.load_config,
- local_rank=0,
- rank=0,
- distributed_init_method=distributed_init_method,
- lora_config=self.lora_config,
- vision_language_config=self.vision_language_config,
- is_driver_worker=True,
- )
- draft_worker = MultiStepWorker(
- model_config=self.speculative_config.draft_model_config,
- parallel_config=self.speculative_config.draft_parallel_config,
- scheduler_config=self.scheduler_config,
- device_config=self.device_config,
- cache_config=self.cache_config,
- # TODO allow draft-model specific load config.
- load_config=self.load_config,
- local_rank=0,
- rank=0,
- distributed_init_method=distributed_init_method,
- lora_config=self.lora_config,
- vision_language_config=self.vision_language_config,
- is_driver_worker=True,
- )
- spec_decode_worker = SpecDecodeWorker.from_workers(
- proposer_worker=draft_worker, scorer_worker=target_worker)
- assert self.parallel_config.world_size == 1, (
- "GPUExecutor only supports single GPU.")
- self.driver_worker = spec_decode_worker
- # Load model handled in spec decode worker.
- self.driver_worker.init_device()
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks by invoking the
- underlying worker.
- """
- return self.driver_worker.determine_num_available_blocks()
- def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None:
- """Initialize the KV cache by invoking the underlying worker.
- """
- # NOTE: This is logged in the executor because there can be >1 worker
- # with other executors. We could log in the engine level, but work
- # remains to abstract away the device for non-GPU configurations.
- logger.info(f"# GPU blocks: {num_gpu_blocks}, "
- f"# CPU blocks: {num_cpu_blocks}")
- logger.info(
- f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501
- )
- self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
- def execute_model(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- blocks_to_swap_in: Dict[int, int],
- blocks_to_swap_out: Dict[int, int],
- blocks_to_copy: Dict[int, List[int]],
- num_lookahead_slots: int,
- ) -> List[SamplerOutput]:
- output = self.driver_worker.execute_model(
- seq_group_metadata_list=seq_group_metadata_list,
- blocks_to_swap_in=blocks_to_swap_in,
- blocks_to_swap_out=blocks_to_swap_out,
- blocks_to_copy=blocks_to_copy,
- num_lookahead_slots=num_lookahead_slots,
- )
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
- return self.driver_worker.add_lora(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- assert lora_id > 0, "lora_id must be greater than 0."
- return self.driver_worker.remove_lora(lora_id)
- def list_loras(self) -> Set[int]:
- return self.driver_worker.list_loras()
- def check_health(self) -> None:
- # GPUExecutor will always be healthy as long as
- # it's running.
- return
- class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):
- async def execute_model_async(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- blocks_to_swap_in: Dict[int, int],
- blocks_to_swap_out: Dict[int, int],
- blocks_to_copy: Dict[int, List[int]],
- num_lookahead_slots: int,
- ) -> SamplerOutput:
- output = await make_async(self.driver_worker.execute_model)(
- seq_group_metadata_list=seq_group_metadata_list,
- blocks_to_swap_in=blocks_to_swap_in,
- blocks_to_swap_out=blocks_to_swap_out,
- blocks_to_copy=blocks_to_copy,
- num_lookahead_slots=num_lookahead_slots)
- return output
|