from typing import Dict, List, Set, Tuple from loguru import logger from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata from aphrodite.common.utils import (get_distributed_init_method, get_ip, get_open_port, make_async) from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase from aphrodite.lora.request import LoRARequest class GPUExecutor(ExecutorBase): def _init_executor(self) -> None: """Initialize the worker and load the model. If speculative decoding is enabled, we instead create the speculative worker. """ if self.speculative_config is None: self._init_non_spec_worker() else: self._init_spec_worker() def _init_non_spec_worker(self): # Lazy import the Worker to avoid importing torch.cuda/xformers # before CUDA_VISIBLE_DEVICES is set in the Worker from aphrodite.task_handler.worker import Worker assert self.parallel_config.world_size == 1, ( "GPUExecutor only supports single GPU.") distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) self.driver_worker = Worker( model_config=self.model_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, device_config=self.device_config, cache_config=self.cache_config, load_config=self.load_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method, lora_config=self.lora_config, vision_language_config=self.vision_language_config, is_driver_worker=True, ) self.driver_worker.init_device() self.driver_worker.load_model() def _init_spec_worker(self): """Initialize a SpecDecodeWorker, using a draft model for proposals. """ assert self.speculative_config is not None from aphrodite.spec_decode.multi_step_worker import MultiStepWorker from aphrodite.spec_decode.spec_decode_worker import SpecDecodeWorker from aphrodite.task_handler.worker import Worker distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) target_worker = Worker( model_config=self.model_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, device_config=self.device_config, cache_config=self.cache_config, load_config=self.load_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method, lora_config=self.lora_config, vision_language_config=self.vision_language_config, is_driver_worker=True, ) draft_worker = MultiStepWorker( model_config=self.speculative_config.draft_model_config, parallel_config=self.speculative_config.draft_parallel_config, scheduler_config=self.scheduler_config, device_config=self.device_config, cache_config=self.cache_config, # TODO allow draft-model specific load config. load_config=self.load_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method, lora_config=self.lora_config, vision_language_config=self.vision_language_config, is_driver_worker=True, ) spec_decode_worker = SpecDecodeWorker.from_workers( proposer_worker=draft_worker, scorer_worker=target_worker) assert self.parallel_config.world_size == 1, ( "GPUExecutor only supports single GPU.") self.driver_worker = spec_decode_worker # Load model handled in spec decode worker. self.driver_worker.init_device() def determine_num_available_blocks(self) -> Tuple[int, int]: """Determine the number of available KV blocks by invoking the underlying worker. """ return self.driver_worker.determine_num_available_blocks() def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None: """Initialize the KV cache by invoking the underlying worker. """ # NOTE: This is logged in the executor because there can be >1 worker # with other executors. We could log in the engine level, but work # remains to abstract away the device for non-GPU configurations. logger.info(f"# GPU blocks: {num_gpu_blocks}, " f"# CPU blocks: {num_cpu_blocks}") logger.info( f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501 ) self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks) def execute_model( self, seq_group_metadata_list: List[SequenceGroupMetadata], blocks_to_swap_in: Dict[int, int], blocks_to_swap_out: Dict[int, int], blocks_to_copy: Dict[int, List[int]], num_lookahead_slots: int, ) -> List[SamplerOutput]: output = self.driver_worker.execute_model( seq_group_metadata_list=seq_group_metadata_list, blocks_to_swap_in=blocks_to_swap_in, blocks_to_swap_out=blocks_to_swap_out, blocks_to_copy=blocks_to_copy, num_lookahead_slots=num_lookahead_slots, ) return output def add_lora(self, lora_request: LoRARequest) -> bool: assert lora_request.lora_int_id > 0, "lora_id must be greater than 0." return self.driver_worker.add_lora(lora_request) def remove_lora(self, lora_id: int) -> bool: assert lora_id > 0, "lora_id must be greater than 0." return self.driver_worker.remove_lora(lora_id) def list_loras(self) -> Set[int]: return self.driver_worker.list_loras() def check_health(self) -> None: # GPUExecutor will always be healthy as long as # it's running. return class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase): async def execute_model_async( self, seq_group_metadata_list: List[SequenceGroupMetadata], blocks_to_swap_in: Dict[int, int], blocks_to_swap_out: Dict[int, int], blocks_to_copy: Dict[int, List[int]], num_lookahead_slots: int, ) -> SamplerOutput: output = await make_async(self.driver_worker.execute_model)( seq_group_metadata_list=seq_group_metadata_list, blocks_to_swap_in=blocks_to_swap_in, blocks_to_swap_out=blocks_to_swap_out, blocks_to_copy=blocks_to_copy, num_lookahead_slots=num_lookahead_slots) return output