|
@@ -8,9 +8,8 @@ from aphrodite.attention import Attention, AttentionMetadata
|
|
|
from aphrodite.common.config import CacheConfig
|
|
|
from aphrodite.common.sequence import IntermediateTensors
|
|
|
from aphrodite.distributed import (get_tensor_model_parallel_rank,
|
|
|
- get_tensor_model_parallel_world_size,
|
|
|
- tensor_model_parallel_all_reduce)
|
|
|
-from aphrodite.modeling.layers.fused_moe import fused_moe
|
|
|
+ get_tensor_model_parallel_world_size)
|
|
|
+from aphrodite.modeling.layers.fused_moe import FusedMoE
|
|
|
from aphrodite.modeling.layers.linear import (QKVParallelLinear,
|
|
|
ReplicatedLinear,
|
|
|
RowParallelLinear)
|
|
@@ -21,7 +20,6 @@ from aphrodite.modeling.layers.vocab_parallel_embedding import (
|
|
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
|
|
from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
|
|
|
from aphrodite.modeling.sampling_metadata import SamplingMetadata
|
|
|
-from aphrodite.modeling.utils import set_weight_attrs
|
|
|
from aphrodite.quantization.base_config import QuantizationConfig
|
|
|
from aphrodite.transformers_utils.configs.dbrx import DbrxConfig
|
|
|
|
|
@@ -53,13 +51,7 @@ class DbrxRouter(nn.Module):
|
|
|
return router_logits
|
|
|
|
|
|
|
|
|
-class DbrxExperts(nn.Module):
|
|
|
- """A tensor-parallel MoE implementation for DBRX.
|
|
|
-
|
|
|
- Each expert's weights are sharded across all ranks and a fused MoE
|
|
|
- kernel is used for the forward pass, and finally we reduce the outputs
|
|
|
- across ranks.
|
|
|
- """
|
|
|
+class DbrxExperts(FusedMoE):
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
@@ -67,49 +59,24 @@ class DbrxExperts(nn.Module):
|
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
|
):
|
|
|
- super().__init__()
|
|
|
+ super().__init__(
|
|
|
+ num_experts=config.ffn_config.moe_num_experts,
|
|
|
+ top_k=config.ffn_config.moe_top_k,
|
|
|
+ hidden_size=config.d_model,
|
|
|
+ intermediate_size=config.ffn_config.ffn_hidden_size,
|
|
|
+ params_dtype=params_dtype,
|
|
|
+ reduce_results=True,
|
|
|
+ renormalize=True,
|
|
|
+ quant_config=quant_config,
|
|
|
+ tp_size=get_tensor_model_parallel_world_size(),
|
|
|
+ )
|
|
|
+ self.config = config
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
- self.num_total_experts = config.ffn_config.moe_num_experts
|
|
|
- self.top_k = config.ffn_config.moe_top_k
|
|
|
self.d_model = config.d_model
|
|
|
- self.intermediate_size = (config.ffn_config.ffn_hidden_size //
|
|
|
+ self.intermediate_size = (self.config.ffn_config.ffn_hidden_size //
|
|
|
self.tp_size)
|
|
|
|
|
|
- if params_dtype is None:
|
|
|
- params_dtype = torch.get_default_dtype()
|
|
|
- self.params_dtype = params_dtype
|
|
|
-
|
|
|
- self.router = DbrxRouter(config, self.params_dtype)
|
|
|
- self.ws = nn.Parameter(
|
|
|
- torch.empty(
|
|
|
- self.num_total_experts,
|
|
|
- 2 * self.intermediate_size,
|
|
|
- self.d_model,
|
|
|
- device="cuda",
|
|
|
- dtype=self.params_dtype,
|
|
|
- ))
|
|
|
- self.w2s = nn.Parameter(
|
|
|
- torch.empty(
|
|
|
- self.num_total_experts,
|
|
|
- self.d_model,
|
|
|
- self.intermediate_size,
|
|
|
- device="cuda",
|
|
|
- dtype=self.params_dtype,
|
|
|
- ))
|
|
|
-
|
|
|
- set_weight_attrs(
|
|
|
- self.ws,
|
|
|
- {
|
|
|
- "weight_loader": self.weight_loader,
|
|
|
- },
|
|
|
- )
|
|
|
- set_weight_attrs(
|
|
|
- self.w2s,
|
|
|
- {
|
|
|
- "weight_loader": self.weight_loader,
|
|
|
- },
|
|
|
- )
|
|
|
-
|
|
|
+ # Define custom weight loader for dbrx model
|
|
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
|
|
|
weight_name: str):
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
@@ -139,26 +106,40 @@ class DbrxExperts(nn.Module):
|
|
|
).transpose(1, 2)
|
|
|
param_data[:] = loaded_weight[:, :, shard]
|
|
|
|
|
|
+
|
|
|
+class DbrxMoE(nn.Module):
|
|
|
+ """A tensor-parallel MoE implementation for DBRX.
|
|
|
+
|
|
|
+ Each expert's weights are sharded across all ranks and a fused MoE
|
|
|
+ kernel is used for the forward pass, and finally we reduce the outputs
|
|
|
+ across ranks.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ config: DbrxConfig,
|
|
|
+ quant_config: Optional[QuantizationConfig] = None,
|
|
|
+ params_dtype: Optional[torch.dtype] = None,
|
|
|
+ ):
|
|
|
+ super().__init__()
|
|
|
+ self.d_model = config.d_model
|
|
|
+ if params_dtype is None:
|
|
|
+ params_dtype = torch.get_default_dtype()
|
|
|
+ self.params_dtype = params_dtype
|
|
|
+
|
|
|
+ self.router = DbrxRouter(config, self.params_dtype)
|
|
|
+
|
|
|
+ self.experts = DbrxExperts(config=config,
|
|
|
+ quant_config=quant_config,
|
|
|
+ params_dtype=self.params_dtype)
|
|
|
+
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
- num_tokens, hidden_size = hidden_states.shape
|
|
|
+ orig_shape = hidden_states.shape
|
|
|
hidden_states = hidden_states.view(-1, self.d_model)
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
|
router_logits = self.router(hidden_states)
|
|
|
- final_hidden_states = fused_moe(
|
|
|
- hidden_states,
|
|
|
- self.ws,
|
|
|
- self.w2s,
|
|
|
- router_logits,
|
|
|
- self.top_k,
|
|
|
- renormalize=True,
|
|
|
- inplace=True,
|
|
|
- )
|
|
|
-
|
|
|
- if self.tp_size > 1:
|
|
|
- final_hidden_states = tensor_model_parallel_all_reduce(
|
|
|
- final_hidden_states)
|
|
|
-
|
|
|
- return final_hidden_states.view(num_tokens, hidden_size)
|
|
|
+ final_hidden_states = self.experts(hidden_states, router_logits)
|
|
|
+ return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
|
|
|
class DbrxAttention(nn.Module):
|
|
@@ -287,7 +268,7 @@ class DbrxBlock(nn.Module):
|
|
|
super().__init__()
|
|
|
self.norm_attn_norm = DbrxFusedNormAttention(config, cache_config,
|
|
|
quant_config)
|
|
|
- self.ffn = DbrxExperts(config, quant_config)
|
|
|
+ self.ffn = DbrxMoE(config, quant_config)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
@@ -361,6 +342,9 @@ class DbrxForCausalLM(nn.Module):
|
|
|
):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
+ if config.tie_word_embeddings:
|
|
|
+ raise ValueError(
|
|
|
+ "tie_word_embeddings is not supported for Dbrx models.")
|
|
|
self.quant_config = quant_config
|
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
|
self.transformer = DbrxModel(config, cache_config, quant_config)
|
|
@@ -405,9 +389,10 @@ class DbrxForCausalLM(nn.Module):
|
|
|
return next_tokens
|
|
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
|
+
|
|
|
expert_params_mapping = [(
|
|
|
- "ws" if weight_name in ["w1", "v1"] else "w2s",
|
|
|
- f"experts.mlp.{weight_name}",
|
|
|
+ "w13_weight" if weight_name in ["w1", "v1"] else "w2_weight",
|
|
|
+ f"mlp.{weight_name}",
|
|
|
) for weight_name in ["w1", "v1", "w2"]]
|
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
|
for name, loaded_weight in weights:
|