models_onnx.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. import copy
  2. import math
  3. import torch
  4. from torch import nn
  5. from torch.nn import functional as F
  6. from module import commons
  7. from module import modules
  8. from module import attentions_onnx as attentions
  9. from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
  10. from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
  11. from module.commons import init_weights, get_padding
  12. from module.mrte_model import MRTE
  13. from module.quantize import ResidualVectorQuantizer
  14. from text import symbols
  15. from torch.cuda.amp import autocast
  16. class StochasticDurationPredictor(nn.Module):
  17. def __init__(
  18. self,
  19. in_channels,
  20. filter_channels,
  21. kernel_size,
  22. p_dropout,
  23. n_flows=4,
  24. gin_channels=0,
  25. ):
  26. super().__init__()
  27. filter_channels = in_channels # it needs to be removed from future version.
  28. self.in_channels = in_channels
  29. self.filter_channels = filter_channels
  30. self.kernel_size = kernel_size
  31. self.p_dropout = p_dropout
  32. self.n_flows = n_flows
  33. self.gin_channels = gin_channels
  34. self.log_flow = modules.Log()
  35. self.flows = nn.ModuleList()
  36. self.flows.append(modules.ElementwiseAffine(2))
  37. for i in range(n_flows):
  38. self.flows.append(
  39. modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
  40. )
  41. self.flows.append(modules.Flip())
  42. self.post_pre = nn.Conv1d(1, filter_channels, 1)
  43. self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
  44. self.post_convs = modules.DDSConv(
  45. filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
  46. )
  47. self.post_flows = nn.ModuleList()
  48. self.post_flows.append(modules.ElementwiseAffine(2))
  49. for i in range(4):
  50. self.post_flows.append(
  51. modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
  52. )
  53. self.post_flows.append(modules.Flip())
  54. self.pre = nn.Conv1d(in_channels, filter_channels, 1)
  55. self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
  56. self.convs = modules.DDSConv(
  57. filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
  58. )
  59. if gin_channels != 0:
  60. self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
  61. def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
  62. x = torch.detach(x)
  63. x = self.pre(x)
  64. if g is not None:
  65. g = torch.detach(g)
  66. x = x + self.cond(g)
  67. x = self.convs(x, x_mask)
  68. x = self.proj(x) * x_mask
  69. if not reverse:
  70. flows = self.flows
  71. assert w is not None
  72. logdet_tot_q = 0
  73. h_w = self.post_pre(w)
  74. h_w = self.post_convs(h_w, x_mask)
  75. h_w = self.post_proj(h_w) * x_mask
  76. e_q = (
  77. torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
  78. * x_mask
  79. )
  80. z_q = e_q
  81. for flow in self.post_flows:
  82. z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
  83. logdet_tot_q += logdet_q
  84. z_u, z1 = torch.split(z_q, [1, 1], 1)
  85. u = torch.sigmoid(z_u) * x_mask
  86. z0 = (w - u) * x_mask
  87. logdet_tot_q += torch.sum(
  88. (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
  89. )
  90. logq = (
  91. torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
  92. - logdet_tot_q
  93. )
  94. logdet_tot = 0
  95. z0, logdet = self.log_flow(z0, x_mask)
  96. logdet_tot += logdet
  97. z = torch.cat([z0, z1], 1)
  98. for flow in flows:
  99. z, logdet = flow(z, x_mask, g=x, reverse=reverse)
  100. logdet_tot = logdet_tot + logdet
  101. nll = (
  102. torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
  103. - logdet_tot
  104. )
  105. return nll + logq # [b]
  106. else:
  107. flows = list(reversed(self.flows))
  108. flows = flows[:-2] + [flows[-1]] # remove a useless vflow
  109. z = (
  110. torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
  111. * noise_scale
  112. )
  113. for flow in flows:
  114. z = flow(z, x_mask, g=x, reverse=reverse)
  115. z0, z1 = torch.split(z, [1, 1], 1)
  116. logw = z0
  117. return logw
  118. class DurationPredictor(nn.Module):
  119. def __init__(
  120. self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
  121. ):
  122. super().__init__()
  123. self.in_channels = in_channels
  124. self.filter_channels = filter_channels
  125. self.kernel_size = kernel_size
  126. self.p_dropout = p_dropout
  127. self.gin_channels = gin_channels
  128. self.drop = nn.Dropout(p_dropout)
  129. self.conv_1 = nn.Conv1d(
  130. in_channels, filter_channels, kernel_size, padding=kernel_size // 2
  131. )
  132. self.norm_1 = modules.LayerNorm(filter_channels)
  133. self.conv_2 = nn.Conv1d(
  134. filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
  135. )
  136. self.norm_2 = modules.LayerNorm(filter_channels)
  137. self.proj = nn.Conv1d(filter_channels, 1, 1)
  138. if gin_channels != 0:
  139. self.cond = nn.Conv1d(gin_channels, in_channels, 1)
  140. def forward(self, x, x_mask, g=None):
  141. x = torch.detach(x)
  142. if g is not None:
  143. g = torch.detach(g)
  144. x = x + self.cond(g)
  145. x = self.conv_1(x * x_mask)
  146. x = torch.relu(x)
  147. x = self.norm_1(x)
  148. x = self.drop(x)
  149. x = self.conv_2(x * x_mask)
  150. x = torch.relu(x)
  151. x = self.norm_2(x)
  152. x = self.drop(x)
  153. x = self.proj(x * x_mask)
  154. return x * x_mask
  155. class TextEncoder(nn.Module):
  156. def __init__(
  157. self,
  158. out_channels,
  159. hidden_channels,
  160. filter_channels,
  161. n_heads,
  162. n_layers,
  163. kernel_size,
  164. p_dropout,
  165. latent_channels=192,
  166. ):
  167. super().__init__()
  168. self.out_channels = out_channels
  169. self.hidden_channels = hidden_channels
  170. self.filter_channels = filter_channels
  171. self.n_heads = n_heads
  172. self.n_layers = n_layers
  173. self.kernel_size = kernel_size
  174. self.p_dropout = p_dropout
  175. self.latent_channels = latent_channels
  176. self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
  177. self.encoder_ssl = attentions.Encoder(
  178. hidden_channels,
  179. filter_channels,
  180. n_heads,
  181. n_layers // 2,
  182. kernel_size,
  183. p_dropout,
  184. )
  185. self.encoder_text = attentions.Encoder(
  186. hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
  187. )
  188. self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
  189. self.mrte = MRTE()
  190. self.encoder2 = attentions.Encoder(
  191. hidden_channels,
  192. filter_channels,
  193. n_heads,
  194. n_layers // 2,
  195. kernel_size,
  196. p_dropout,
  197. )
  198. self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
  199. def forward(self, y, text, ge):
  200. y_mask = torch.ones_like(y[:1,:1,:])
  201. y = self.ssl_proj(y * y_mask) * y_mask
  202. y = self.encoder_ssl(y * y_mask, y_mask)
  203. text_mask = torch.ones_like(text).to(y.dtype).unsqueeze(0)
  204. text = self.text_embedding(text).transpose(1, 2)
  205. text = self.encoder_text(text * text_mask, text_mask)
  206. y = self.mrte(y, y_mask, text, text_mask, ge)
  207. y = self.encoder2(y * y_mask, y_mask)
  208. stats = self.proj(y) * y_mask
  209. m, logs = torch.split(stats, self.out_channels, dim=1)
  210. return y, m, logs, y_mask
  211. def extract_latent(self, x):
  212. x = self.ssl_proj(x)
  213. quantized, codes, commit_loss, quantized_list = self.quantizer(x)
  214. return codes.transpose(0, 1)
  215. def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
  216. quantized = self.quantizer.decode(codes)
  217. y = self.vq_proj(quantized) * y_mask
  218. y = self.encoder_ssl(y * y_mask, y_mask)
  219. y = self.mrte(y, y_mask, refer, refer_mask, ge)
  220. y = self.encoder2(y * y_mask, y_mask)
  221. stats = self.proj(y) * y_mask
  222. m, logs = torch.split(stats, self.out_channels, dim=1)
  223. return y, m, logs, y_mask, quantized
  224. class ResidualCouplingBlock(nn.Module):
  225. def __init__(
  226. self,
  227. channels,
  228. hidden_channels,
  229. kernel_size,
  230. dilation_rate,
  231. n_layers,
  232. n_flows=4,
  233. gin_channels=0,
  234. ):
  235. super().__init__()
  236. self.channels = channels
  237. self.hidden_channels = hidden_channels
  238. self.kernel_size = kernel_size
  239. self.dilation_rate = dilation_rate
  240. self.n_layers = n_layers
  241. self.n_flows = n_flows
  242. self.gin_channels = gin_channels
  243. self.flows = nn.ModuleList()
  244. for i in range(n_flows):
  245. self.flows.append(
  246. modules.ResidualCouplingLayer(
  247. channels,
  248. hidden_channels,
  249. kernel_size,
  250. dilation_rate,
  251. n_layers,
  252. gin_channels=gin_channels,
  253. mean_only=True,
  254. )
  255. )
  256. self.flows.append(modules.Flip())
  257. def forward(self, x, x_mask, g=None, reverse=False):
  258. if not reverse:
  259. for flow in self.flows:
  260. x, _ = flow(x, x_mask, g=g, reverse=reverse)
  261. else:
  262. for flow in reversed(self.flows):
  263. x = flow(x, x_mask, g=g, reverse=reverse)
  264. return x
  265. class PosteriorEncoder(nn.Module):
  266. def __init__(
  267. self,
  268. in_channels,
  269. out_channels,
  270. hidden_channels,
  271. kernel_size,
  272. dilation_rate,
  273. n_layers,
  274. gin_channels=0,
  275. ):
  276. super().__init__()
  277. self.in_channels = in_channels
  278. self.out_channels = out_channels
  279. self.hidden_channels = hidden_channels
  280. self.kernel_size = kernel_size
  281. self.dilation_rate = dilation_rate
  282. self.n_layers = n_layers
  283. self.gin_channels = gin_channels
  284. self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
  285. self.enc = modules.WN(
  286. hidden_channels,
  287. kernel_size,
  288. dilation_rate,
  289. n_layers,
  290. gin_channels=gin_channels,
  291. )
  292. self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
  293. def forward(self, x, x_lengths, g=None):
  294. if g != None:
  295. g = g.detach()
  296. x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
  297. x.dtype
  298. )
  299. x = self.pre(x) * x_mask
  300. x = self.enc(x, x_mask, g=g)
  301. stats = self.proj(x) * x_mask
  302. m, logs = torch.split(stats, self.out_channels, dim=1)
  303. z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
  304. return z, m, logs, x_mask
  305. class WNEncoder(nn.Module):
  306. def __init__(
  307. self,
  308. in_channels,
  309. out_channels,
  310. hidden_channels,
  311. kernel_size,
  312. dilation_rate,
  313. n_layers,
  314. gin_channels=0,
  315. ):
  316. super().__init__()
  317. self.in_channels = in_channels
  318. self.out_channels = out_channels
  319. self.hidden_channels = hidden_channels
  320. self.kernel_size = kernel_size
  321. self.dilation_rate = dilation_rate
  322. self.n_layers = n_layers
  323. self.gin_channels = gin_channels
  324. self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
  325. self.enc = modules.WN(
  326. hidden_channels,
  327. kernel_size,
  328. dilation_rate,
  329. n_layers,
  330. gin_channels=gin_channels,
  331. )
  332. self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
  333. self.norm = modules.LayerNorm(out_channels)
  334. def forward(self, x, x_lengths, g=None):
  335. x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
  336. x.dtype
  337. )
  338. x = self.pre(x) * x_mask
  339. x = self.enc(x, x_mask, g=g)
  340. out = self.proj(x) * x_mask
  341. out = self.norm(out)
  342. return out
  343. class Generator(torch.nn.Module):
  344. def __init__(
  345. self,
  346. initial_channel,
  347. resblock,
  348. resblock_kernel_sizes,
  349. resblock_dilation_sizes,
  350. upsample_rates,
  351. upsample_initial_channel,
  352. upsample_kernel_sizes,
  353. gin_channels=0,
  354. ):
  355. super(Generator, self).__init__()
  356. self.num_kernels = len(resblock_kernel_sizes)
  357. self.num_upsamples = len(upsample_rates)
  358. self.conv_pre = Conv1d(
  359. initial_channel, upsample_initial_channel, 7, 1, padding=3
  360. )
  361. resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
  362. self.ups = nn.ModuleList()
  363. for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
  364. self.ups.append(
  365. weight_norm(
  366. ConvTranspose1d(
  367. upsample_initial_channel // (2**i),
  368. upsample_initial_channel // (2 ** (i + 1)),
  369. k,
  370. u,
  371. padding=(k - u) // 2,
  372. )
  373. )
  374. )
  375. self.resblocks = nn.ModuleList()
  376. for i in range(len(self.ups)):
  377. ch = upsample_initial_channel // (2 ** (i + 1))
  378. for j, (k, d) in enumerate(
  379. zip(resblock_kernel_sizes, resblock_dilation_sizes)
  380. ):
  381. self.resblocks.append(resblock(ch, k, d))
  382. self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
  383. self.ups.apply(init_weights)
  384. if gin_channels != 0:
  385. self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
  386. def forward(self, x, g=None):
  387. x = self.conv_pre(x)
  388. if g is not None:
  389. x = x + self.cond(g)
  390. for i in range(self.num_upsamples):
  391. x = F.leaky_relu(x, modules.LRELU_SLOPE)
  392. x = self.ups[i](x)
  393. xs = None
  394. for j in range(self.num_kernels):
  395. if xs is None:
  396. xs = self.resblocks[i * self.num_kernels + j](x)
  397. else:
  398. xs += self.resblocks[i * self.num_kernels + j](x)
  399. x = xs / self.num_kernels
  400. x = F.leaky_relu(x)
  401. x = self.conv_post(x)
  402. x = torch.tanh(x)
  403. return x
  404. def remove_weight_norm(self):
  405. print("Removing weight norm...")
  406. for l in self.ups:
  407. remove_weight_norm(l)
  408. for l in self.resblocks:
  409. l.remove_weight_norm()
  410. class DiscriminatorP(torch.nn.Module):
  411. def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
  412. super(DiscriminatorP, self).__init__()
  413. self.period = period
  414. self.use_spectral_norm = use_spectral_norm
  415. norm_f = weight_norm if use_spectral_norm == False else spectral_norm
  416. self.convs = nn.ModuleList(
  417. [
  418. norm_f(
  419. Conv2d(
  420. 1,
  421. 32,
  422. (kernel_size, 1),
  423. (stride, 1),
  424. padding=(get_padding(kernel_size, 1), 0),
  425. )
  426. ),
  427. norm_f(
  428. Conv2d(
  429. 32,
  430. 128,
  431. (kernel_size, 1),
  432. (stride, 1),
  433. padding=(get_padding(kernel_size, 1), 0),
  434. )
  435. ),
  436. norm_f(
  437. Conv2d(
  438. 128,
  439. 512,
  440. (kernel_size, 1),
  441. (stride, 1),
  442. padding=(get_padding(kernel_size, 1), 0),
  443. )
  444. ),
  445. norm_f(
  446. Conv2d(
  447. 512,
  448. 1024,
  449. (kernel_size, 1),
  450. (stride, 1),
  451. padding=(get_padding(kernel_size, 1), 0),
  452. )
  453. ),
  454. norm_f(
  455. Conv2d(
  456. 1024,
  457. 1024,
  458. (kernel_size, 1),
  459. 1,
  460. padding=(get_padding(kernel_size, 1), 0),
  461. )
  462. ),
  463. ]
  464. )
  465. self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
  466. def forward(self, x):
  467. fmap = []
  468. # 1d to 2d
  469. b, c, t = x.shape
  470. if t % self.period != 0: # pad first
  471. n_pad = self.period - (t % self.period)
  472. x = F.pad(x, (0, n_pad), "reflect")
  473. t = t + n_pad
  474. x = x.view(b, c, t // self.period, self.period)
  475. for l in self.convs:
  476. x = l(x)
  477. x = F.leaky_relu(x, modules.LRELU_SLOPE)
  478. fmap.append(x)
  479. x = self.conv_post(x)
  480. fmap.append(x)
  481. x = torch.flatten(x, 1, -1)
  482. return x, fmap
  483. class DiscriminatorS(torch.nn.Module):
  484. def __init__(self, use_spectral_norm=False):
  485. super(DiscriminatorS, self).__init__()
  486. norm_f = weight_norm if use_spectral_norm == False else spectral_norm
  487. self.convs = nn.ModuleList(
  488. [
  489. norm_f(Conv1d(1, 16, 15, 1, padding=7)),
  490. norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
  491. norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
  492. norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
  493. norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
  494. norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
  495. ]
  496. )
  497. self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
  498. def forward(self, x):
  499. fmap = []
  500. for l in self.convs:
  501. x = l(x)
  502. x = F.leaky_relu(x, modules.LRELU_SLOPE)
  503. fmap.append(x)
  504. x = self.conv_post(x)
  505. fmap.append(x)
  506. x = torch.flatten(x, 1, -1)
  507. return x, fmap
  508. class MultiPeriodDiscriminator(torch.nn.Module):
  509. def __init__(self, use_spectral_norm=False):
  510. super(MultiPeriodDiscriminator, self).__init__()
  511. periods = [2, 3, 5, 7, 11]
  512. discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
  513. discs = discs + [
  514. DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
  515. ]
  516. self.discriminators = nn.ModuleList(discs)
  517. def forward(self, y, y_hat):
  518. y_d_rs = []
  519. y_d_gs = []
  520. fmap_rs = []
  521. fmap_gs = []
  522. for i, d in enumerate(self.discriminators):
  523. y_d_r, fmap_r = d(y)
  524. y_d_g, fmap_g = d(y_hat)
  525. y_d_rs.append(y_d_r)
  526. y_d_gs.append(y_d_g)
  527. fmap_rs.append(fmap_r)
  528. fmap_gs.append(fmap_g)
  529. return y_d_rs, y_d_gs, fmap_rs, fmap_gs
  530. class ReferenceEncoder(nn.Module):
  531. """
  532. inputs --- [N, Ty/r, n_mels*r] mels
  533. outputs --- [N, ref_enc_gru_size]
  534. """
  535. def __init__(self, spec_channels, gin_channels=0):
  536. super().__init__()
  537. self.spec_channels = spec_channels
  538. ref_enc_filters = [32, 32, 64, 64, 128, 128]
  539. K = len(ref_enc_filters)
  540. filters = [1] + ref_enc_filters
  541. convs = [
  542. weight_norm(
  543. nn.Conv2d(
  544. in_channels=filters[i],
  545. out_channels=filters[i + 1],
  546. kernel_size=(3, 3),
  547. stride=(2, 2),
  548. padding=(1, 1),
  549. )
  550. )
  551. for i in range(K)
  552. ]
  553. self.convs = nn.ModuleList(convs)
  554. # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
  555. out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
  556. self.gru = nn.GRU(
  557. input_size=ref_enc_filters[-1] * out_channels,
  558. hidden_size=256 // 2,
  559. batch_first=True,
  560. )
  561. self.proj = nn.Linear(128, gin_channels)
  562. def forward(self, inputs):
  563. N = inputs.size(0)
  564. out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
  565. for conv in self.convs:
  566. out = conv(out)
  567. # out = wn(out)
  568. out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
  569. out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
  570. T = out.size(1)
  571. N = out.size(0)
  572. out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
  573. self.gru.flatten_parameters()
  574. memory, out = self.gru(out) # out --- [1, N, 128]
  575. return self.proj(out.squeeze(0)).unsqueeze(-1)
  576. def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
  577. for i in range(n_convs):
  578. L = (L - kernel_size + 2 * pad) // stride + 1
  579. return L
  580. class Quantizer_module(torch.nn.Module):
  581. def __init__(self, n_e, e_dim):
  582. super(Quantizer_module, self).__init__()
  583. self.embedding = nn.Embedding(n_e, e_dim)
  584. self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
  585. def forward(self, x):
  586. d = (
  587. torch.sum(x**2, 1, keepdim=True)
  588. + torch.sum(self.embedding.weight**2, 1)
  589. - 2 * torch.matmul(x, self.embedding.weight.T)
  590. )
  591. min_indicies = torch.argmin(d, 1)
  592. z_q = self.embedding(min_indicies)
  593. return z_q, min_indicies
  594. class Quantizer(torch.nn.Module):
  595. def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
  596. super(Quantizer, self).__init__()
  597. assert embed_dim % n_code_groups == 0
  598. self.quantizer_modules = nn.ModuleList(
  599. [
  600. Quantizer_module(n_codes, embed_dim // n_code_groups)
  601. for _ in range(n_code_groups)
  602. ]
  603. )
  604. self.n_code_groups = n_code_groups
  605. self.embed_dim = embed_dim
  606. def forward(self, xin):
  607. # B, C, T
  608. B, C, T = xin.shape
  609. xin = xin.transpose(1, 2)
  610. x = xin.reshape(-1, self.embed_dim)
  611. x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
  612. min_indicies = []
  613. z_q = []
  614. for _x, m in zip(x, self.quantizer_modules):
  615. _z_q, _min_indicies = m(_x)
  616. z_q.append(_z_q)
  617. min_indicies.append(_min_indicies) # B * T,
  618. z_q = torch.cat(z_q, -1).reshape(xin.shape)
  619. loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
  620. (z_q - xin.detach()) ** 2
  621. )
  622. z_q = xin + (z_q - xin).detach()
  623. z_q = z_q.transpose(1, 2)
  624. codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
  625. return z_q, loss, codes.transpose(1, 2)
  626. def embed(self, x):
  627. # idx: N, 4, T
  628. x = x.transpose(1, 2)
  629. x = torch.split(x, 1, 2)
  630. ret = []
  631. for q, embed in zip(x, self.quantizer_modules):
  632. q = embed.embedding(q.squeeze(-1))
  633. ret.append(q)
  634. ret = torch.cat(ret, -1)
  635. return ret.transpose(1, 2) # N, C, T
  636. class CodePredictor(nn.Module):
  637. def __init__(
  638. self,
  639. hidden_channels,
  640. filter_channels,
  641. n_heads,
  642. n_layers,
  643. kernel_size,
  644. p_dropout,
  645. n_q=8,
  646. dims=1024,
  647. ssl_dim=768,
  648. ):
  649. super().__init__()
  650. self.hidden_channels = hidden_channels
  651. self.filter_channels = filter_channels
  652. self.n_heads = n_heads
  653. self.n_layers = n_layers
  654. self.kernel_size = kernel_size
  655. self.p_dropout = p_dropout
  656. self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
  657. self.ref_enc = modules.MelStyleEncoder(
  658. ssl_dim, style_vector_dim=hidden_channels
  659. )
  660. self.encoder = attentions.Encoder(
  661. hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
  662. )
  663. self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
  664. self.n_q = n_q
  665. self.dims = dims
  666. def forward(self, x, x_mask, refer, codes, infer=False):
  667. x = x.detach()
  668. x = self.vq_proj(x * x_mask) * x_mask
  669. g = self.ref_enc(refer, x_mask)
  670. x = x + g
  671. x = self.encoder(x * x_mask, x_mask)
  672. x = self.out_proj(x * x_mask) * x_mask
  673. logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
  674. 2, 3
  675. )
  676. target = codes[1:].transpose(0, 1)
  677. if not infer:
  678. logits = logits.reshape(-1, self.dims)
  679. target = target.reshape(-1)
  680. loss = torch.nn.functional.cross_entropy(logits, target)
  681. return loss
  682. else:
  683. _, top10_preds = torch.topk(logits, 10, dim=-1)
  684. correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
  685. top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
  686. print("Top-10 Accuracy:", top3_acc, "%")
  687. pred_codes = torch.argmax(logits, dim=-1)
  688. acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
  689. print("Top-1 Accuracy:", acc, "%")
  690. return pred_codes.transpose(0, 1)
  691. class SynthesizerTrn(nn.Module):
  692. """
  693. Synthesizer for Training
  694. """
  695. def __init__(
  696. self,
  697. spec_channels,
  698. segment_size,
  699. inter_channels,
  700. hidden_channels,
  701. filter_channels,
  702. n_heads,
  703. n_layers,
  704. kernel_size,
  705. p_dropout,
  706. resblock,
  707. resblock_kernel_sizes,
  708. resblock_dilation_sizes,
  709. upsample_rates,
  710. upsample_initial_channel,
  711. upsample_kernel_sizes,
  712. n_speakers=0,
  713. gin_channels=0,
  714. use_sdp=True,
  715. semantic_frame_rate=None,
  716. freeze_quantizer=None,
  717. **kwargs
  718. ):
  719. super().__init__()
  720. self.spec_channels = spec_channels
  721. self.inter_channels = inter_channels
  722. self.hidden_channels = hidden_channels
  723. self.filter_channels = filter_channels
  724. self.n_heads = n_heads
  725. self.n_layers = n_layers
  726. self.kernel_size = kernel_size
  727. self.p_dropout = p_dropout
  728. self.resblock = resblock
  729. self.resblock_kernel_sizes = resblock_kernel_sizes
  730. self.resblock_dilation_sizes = resblock_dilation_sizes
  731. self.upsample_rates = upsample_rates
  732. self.upsample_initial_channel = upsample_initial_channel
  733. self.upsample_kernel_sizes = upsample_kernel_sizes
  734. self.segment_size = segment_size
  735. self.n_speakers = n_speakers
  736. self.gin_channels = gin_channels
  737. self.use_sdp = use_sdp
  738. self.enc_p = TextEncoder(
  739. inter_channels,
  740. hidden_channels,
  741. filter_channels,
  742. n_heads,
  743. n_layers,
  744. kernel_size,
  745. p_dropout,
  746. )
  747. self.dec = Generator(
  748. inter_channels,
  749. resblock,
  750. resblock_kernel_sizes,
  751. resblock_dilation_sizes,
  752. upsample_rates,
  753. upsample_initial_channel,
  754. upsample_kernel_sizes,
  755. gin_channels=gin_channels,
  756. )
  757. self.enc_q = PosteriorEncoder(
  758. spec_channels,
  759. inter_channels,
  760. hidden_channels,
  761. 5,
  762. 1,
  763. 16,
  764. gin_channels=gin_channels,
  765. )
  766. self.flow = ResidualCouplingBlock(
  767. inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
  768. )
  769. self.ref_enc = modules.MelStyleEncoder(
  770. spec_channels, style_vector_dim=gin_channels
  771. )
  772. ssl_dim = 768
  773. self.ssl_dim = ssl_dim
  774. assert semantic_frame_rate in ["25hz", "50hz"]
  775. self.semantic_frame_rate = semantic_frame_rate
  776. if semantic_frame_rate == "25hz":
  777. self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
  778. else:
  779. self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
  780. self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
  781. if freeze_quantizer:
  782. self.ssl_proj.requires_grad_(False)
  783. self.quantizer.requires_grad_(False)
  784. # self.enc_p.text_embedding.requires_grad_(False)
  785. # self.enc_p.encoder_text.requires_grad_(False)
  786. # self.enc_p.mrte.requires_grad_(False)
  787. def forward(self, codes, text, refer):
  788. refer_mask = torch.ones_like(refer[:1,:1,:])
  789. ge = self.ref_enc(refer * refer_mask, refer_mask)
  790. quantized = self.quantizer.decode(codes)
  791. if self.semantic_frame_rate == "25hz":
  792. dquantized = torch.cat([quantized, quantized]).permute(1, 2, 0)
  793. quantized = dquantized.contiguous().view(1, self.ssl_dim, -1)
  794. x, m_p, logs_p, y_mask = self.enc_p(
  795. quantized, text, ge
  796. )
  797. z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p)
  798. z = self.flow(z_p, y_mask, g=ge, reverse=True)
  799. o = self.dec((z * y_mask)[:, :, :], g=ge)
  800. return o
  801. def extract_latent(self, x):
  802. ssl = self.ssl_proj(x)
  803. quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
  804. return codes.transpose(0, 1)