123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918 |
- import copy
- import math
- import torch
- from torch import nn
- from torch.nn import functional as F
- from module import commons
- from module import modules
- from module import attentions_onnx as attentions
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
- from module.commons import init_weights, get_padding
- from module.mrte_model import MRTE
- from module.quantize import ResidualVectorQuantizer
- from text import symbols
- from torch.cuda.amp import autocast
- class StochasticDurationPredictor(nn.Module):
- def __init__(
- self,
- in_channels,
- filter_channels,
- kernel_size,
- p_dropout,
- n_flows=4,
- gin_channels=0,
- ):
- super().__init__()
- filter_channels = in_channels # it needs to be removed from future version.
- self.in_channels = in_channels
- self.filter_channels = filter_channels
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.n_flows = n_flows
- self.gin_channels = gin_channels
- self.log_flow = modules.Log()
- self.flows = nn.ModuleList()
- self.flows.append(modules.ElementwiseAffine(2))
- for i in range(n_flows):
- self.flows.append(
- modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
- )
- self.flows.append(modules.Flip())
- self.post_pre = nn.Conv1d(1, filter_channels, 1)
- self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
- self.post_convs = modules.DDSConv(
- filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
- )
- self.post_flows = nn.ModuleList()
- self.post_flows.append(modules.ElementwiseAffine(2))
- for i in range(4):
- self.post_flows.append(
- modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
- )
- self.post_flows.append(modules.Flip())
- self.pre = nn.Conv1d(in_channels, filter_channels, 1)
- self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
- self.convs = modules.DDSConv(
- filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
- )
- if gin_channels != 0:
- self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
- def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
- x = torch.detach(x)
- x = self.pre(x)
- if g is not None:
- g = torch.detach(g)
- x = x + self.cond(g)
- x = self.convs(x, x_mask)
- x = self.proj(x) * x_mask
- if not reverse:
- flows = self.flows
- assert w is not None
- logdet_tot_q = 0
- h_w = self.post_pre(w)
- h_w = self.post_convs(h_w, x_mask)
- h_w = self.post_proj(h_w) * x_mask
- e_q = (
- torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
- * x_mask
- )
- z_q = e_q
- for flow in self.post_flows:
- z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
- logdet_tot_q += logdet_q
- z_u, z1 = torch.split(z_q, [1, 1], 1)
- u = torch.sigmoid(z_u) * x_mask
- z0 = (w - u) * x_mask
- logdet_tot_q += torch.sum(
- (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
- )
- logq = (
- torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
- - logdet_tot_q
- )
- logdet_tot = 0
- z0, logdet = self.log_flow(z0, x_mask)
- logdet_tot += logdet
- z = torch.cat([z0, z1], 1)
- for flow in flows:
- z, logdet = flow(z, x_mask, g=x, reverse=reverse)
- logdet_tot = logdet_tot + logdet
- nll = (
- torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
- - logdet_tot
- )
- return nll + logq # [b]
- else:
- flows = list(reversed(self.flows))
- flows = flows[:-2] + [flows[-1]] # remove a useless vflow
- z = (
- torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
- * noise_scale
- )
- for flow in flows:
- z = flow(z, x_mask, g=x, reverse=reverse)
- z0, z1 = torch.split(z, [1, 1], 1)
- logw = z0
- return logw
- class DurationPredictor(nn.Module):
- def __init__(
- self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
- ):
- super().__init__()
- self.in_channels = in_channels
- self.filter_channels = filter_channels
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.gin_channels = gin_channels
- self.drop = nn.Dropout(p_dropout)
- self.conv_1 = nn.Conv1d(
- in_channels, filter_channels, kernel_size, padding=kernel_size // 2
- )
- self.norm_1 = modules.LayerNorm(filter_channels)
- self.conv_2 = nn.Conv1d(
- filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
- )
- self.norm_2 = modules.LayerNorm(filter_channels)
- self.proj = nn.Conv1d(filter_channels, 1, 1)
- if gin_channels != 0:
- self.cond = nn.Conv1d(gin_channels, in_channels, 1)
- def forward(self, x, x_mask, g=None):
- x = torch.detach(x)
- if g is not None:
- g = torch.detach(g)
- x = x + self.cond(g)
- x = self.conv_1(x * x_mask)
- x = torch.relu(x)
- x = self.norm_1(x)
- x = self.drop(x)
- x = self.conv_2(x * x_mask)
- x = torch.relu(x)
- x = self.norm_2(x)
- x = self.drop(x)
- x = self.proj(x * x_mask)
- return x * x_mask
- class TextEncoder(nn.Module):
- def __init__(
- self,
- out_channels,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- latent_channels=192,
- ):
- super().__init__()
- self.out_channels = out_channels
- self.hidden_channels = hidden_channels
- self.filter_channels = filter_channels
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.latent_channels = latent_channels
- self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
- self.encoder_ssl = attentions.Encoder(
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers // 2,
- kernel_size,
- p_dropout,
- )
- self.encoder_text = attentions.Encoder(
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
- )
- self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
- self.mrte = MRTE()
- self.encoder2 = attentions.Encoder(
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers // 2,
- kernel_size,
- p_dropout,
- )
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
- def forward(self, y, text, ge):
- y_mask = torch.ones_like(y[:1,:1,:])
- y = self.ssl_proj(y * y_mask) * y_mask
- y = self.encoder_ssl(y * y_mask, y_mask)
- text_mask = torch.ones_like(text).to(y.dtype).unsqueeze(0)
- text = self.text_embedding(text).transpose(1, 2)
- text = self.encoder_text(text * text_mask, text_mask)
- y = self.mrte(y, y_mask, text, text_mask, ge)
- y = self.encoder2(y * y_mask, y_mask)
- stats = self.proj(y) * y_mask
- m, logs = torch.split(stats, self.out_channels, dim=1)
- return y, m, logs, y_mask
- def extract_latent(self, x):
- x = self.ssl_proj(x)
- quantized, codes, commit_loss, quantized_list = self.quantizer(x)
- return codes.transpose(0, 1)
- def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
- quantized = self.quantizer.decode(codes)
- y = self.vq_proj(quantized) * y_mask
- y = self.encoder_ssl(y * y_mask, y_mask)
- y = self.mrte(y, y_mask, refer, refer_mask, ge)
- y = self.encoder2(y * y_mask, y_mask)
- stats = self.proj(y) * y_mask
- m, logs = torch.split(stats, self.out_channels, dim=1)
- return y, m, logs, y_mask, quantized
- class ResidualCouplingBlock(nn.Module):
- def __init__(
- self,
- channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- n_flows=4,
- gin_channels=0,
- ):
- super().__init__()
- self.channels = channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.n_flows = n_flows
- self.gin_channels = gin_channels
- self.flows = nn.ModuleList()
- for i in range(n_flows):
- self.flows.append(
- modules.ResidualCouplingLayer(
- channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=gin_channels,
- mean_only=True,
- )
- )
- self.flows.append(modules.Flip())
- def forward(self, x, x_mask, g=None, reverse=False):
- if not reverse:
- for flow in self.flows:
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
- else:
- for flow in reversed(self.flows):
- x = flow(x, x_mask, g=g, reverse=reverse)
- return x
- class PosteriorEncoder(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=0,
- ):
- super().__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.gin_channels = gin_channels
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
- self.enc = modules.WN(
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=gin_channels,
- )
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
- def forward(self, x, x_lengths, g=None):
- if g != None:
- g = g.detach()
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
- x.dtype
- )
- x = self.pre(x) * x_mask
- x = self.enc(x, x_mask, g=g)
- stats = self.proj(x) * x_mask
- m, logs = torch.split(stats, self.out_channels, dim=1)
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
- return z, m, logs, x_mask
- class WNEncoder(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=0,
- ):
- super().__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.gin_channels = gin_channels
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
- self.enc = modules.WN(
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=gin_channels,
- )
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
- self.norm = modules.LayerNorm(out_channels)
- def forward(self, x, x_lengths, g=None):
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
- x.dtype
- )
- x = self.pre(x) * x_mask
- x = self.enc(x, x_mask, g=g)
- out = self.proj(x) * x_mask
- out = self.norm(out)
- return out
- class Generator(torch.nn.Module):
- def __init__(
- self,
- initial_channel,
- resblock,
- resblock_kernel_sizes,
- resblock_dilation_sizes,
- upsample_rates,
- upsample_initial_channel,
- upsample_kernel_sizes,
- gin_channels=0,
- ):
- super(Generator, self).__init__()
- self.num_kernels = len(resblock_kernel_sizes)
- self.num_upsamples = len(upsample_rates)
- self.conv_pre = Conv1d(
- initial_channel, upsample_initial_channel, 7, 1, padding=3
- )
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
- self.ups = nn.ModuleList()
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
- self.ups.append(
- weight_norm(
- ConvTranspose1d(
- upsample_initial_channel // (2**i),
- upsample_initial_channel // (2 ** (i + 1)),
- k,
- u,
- padding=(k - u) // 2,
- )
- )
- )
- self.resblocks = nn.ModuleList()
- for i in range(len(self.ups)):
- ch = upsample_initial_channel // (2 ** (i + 1))
- for j, (k, d) in enumerate(
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
- ):
- self.resblocks.append(resblock(ch, k, d))
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
- self.ups.apply(init_weights)
- if gin_channels != 0:
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
- def forward(self, x, g=None):
- x = self.conv_pre(x)
- if g is not None:
- x = x + self.cond(g)
- for i in range(self.num_upsamples):
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
- x = self.ups[i](x)
- xs = None
- for j in range(self.num_kernels):
- if xs is None:
- xs = self.resblocks[i * self.num_kernels + j](x)
- else:
- xs += self.resblocks[i * self.num_kernels + j](x)
- x = xs / self.num_kernels
- x = F.leaky_relu(x)
- x = self.conv_post(x)
- x = torch.tanh(x)
- return x
- def remove_weight_norm(self):
- print("Removing weight norm...")
- for l in self.ups:
- remove_weight_norm(l)
- for l in self.resblocks:
- l.remove_weight_norm()
- class DiscriminatorP(torch.nn.Module):
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
- super(DiscriminatorP, self).__init__()
- self.period = period
- self.use_spectral_norm = use_spectral_norm
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
- self.convs = nn.ModuleList(
- [
- norm_f(
- Conv2d(
- 1,
- 32,
- (kernel_size, 1),
- (stride, 1),
- padding=(get_padding(kernel_size, 1), 0),
- )
- ),
- norm_f(
- Conv2d(
- 32,
- 128,
- (kernel_size, 1),
- (stride, 1),
- padding=(get_padding(kernel_size, 1), 0),
- )
- ),
- norm_f(
- Conv2d(
- 128,
- 512,
- (kernel_size, 1),
- (stride, 1),
- padding=(get_padding(kernel_size, 1), 0),
- )
- ),
- norm_f(
- Conv2d(
- 512,
- 1024,
- (kernel_size, 1),
- (stride, 1),
- padding=(get_padding(kernel_size, 1), 0),
- )
- ),
- norm_f(
- Conv2d(
- 1024,
- 1024,
- (kernel_size, 1),
- 1,
- padding=(get_padding(kernel_size, 1), 0),
- )
- ),
- ]
- )
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
- def forward(self, x):
- fmap = []
- # 1d to 2d
- b, c, t = x.shape
- if t % self.period != 0: # pad first
- n_pad = self.period - (t % self.period)
- x = F.pad(x, (0, n_pad), "reflect")
- t = t + n_pad
- x = x.view(b, c, t // self.period, self.period)
- for l in self.convs:
- x = l(x)
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
- fmap.append(x)
- x = self.conv_post(x)
- fmap.append(x)
- x = torch.flatten(x, 1, -1)
- return x, fmap
- class DiscriminatorS(torch.nn.Module):
- def __init__(self, use_spectral_norm=False):
- super(DiscriminatorS, self).__init__()
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
- self.convs = nn.ModuleList(
- [
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
- ]
- )
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
- def forward(self, x):
- fmap = []
- for l in self.convs:
- x = l(x)
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
- fmap.append(x)
- x = self.conv_post(x)
- fmap.append(x)
- x = torch.flatten(x, 1, -1)
- return x, fmap
- class MultiPeriodDiscriminator(torch.nn.Module):
- def __init__(self, use_spectral_norm=False):
- super(MultiPeriodDiscriminator, self).__init__()
- periods = [2, 3, 5, 7, 11]
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
- discs = discs + [
- DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
- ]
- self.discriminators = nn.ModuleList(discs)
- def forward(self, y, y_hat):
- y_d_rs = []
- y_d_gs = []
- fmap_rs = []
- fmap_gs = []
- for i, d in enumerate(self.discriminators):
- y_d_r, fmap_r = d(y)
- y_d_g, fmap_g = d(y_hat)
- y_d_rs.append(y_d_r)
- y_d_gs.append(y_d_g)
- fmap_rs.append(fmap_r)
- fmap_gs.append(fmap_g)
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
- class ReferenceEncoder(nn.Module):
- """
- inputs --- [N, Ty/r, n_mels*r] mels
- outputs --- [N, ref_enc_gru_size]
- """
- def __init__(self, spec_channels, gin_channels=0):
- super().__init__()
- self.spec_channels = spec_channels
- ref_enc_filters = [32, 32, 64, 64, 128, 128]
- K = len(ref_enc_filters)
- filters = [1] + ref_enc_filters
- convs = [
- weight_norm(
- nn.Conv2d(
- in_channels=filters[i],
- out_channels=filters[i + 1],
- kernel_size=(3, 3),
- stride=(2, 2),
- padding=(1, 1),
- )
- )
- for i in range(K)
- ]
- self.convs = nn.ModuleList(convs)
- # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
- out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
- self.gru = nn.GRU(
- input_size=ref_enc_filters[-1] * out_channels,
- hidden_size=256 // 2,
- batch_first=True,
- )
- self.proj = nn.Linear(128, gin_channels)
- def forward(self, inputs):
- N = inputs.size(0)
- out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
- for conv in self.convs:
- out = conv(out)
- # out = wn(out)
- out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
- out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
- T = out.size(1)
- N = out.size(0)
- out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
- self.gru.flatten_parameters()
- memory, out = self.gru(out) # out --- [1, N, 128]
- return self.proj(out.squeeze(0)).unsqueeze(-1)
- def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
- for i in range(n_convs):
- L = (L - kernel_size + 2 * pad) // stride + 1
- return L
- class Quantizer_module(torch.nn.Module):
- def __init__(self, n_e, e_dim):
- super(Quantizer_module, self).__init__()
- self.embedding = nn.Embedding(n_e, e_dim)
- self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
- def forward(self, x):
- d = (
- torch.sum(x**2, 1, keepdim=True)
- + torch.sum(self.embedding.weight**2, 1)
- - 2 * torch.matmul(x, self.embedding.weight.T)
- )
- min_indicies = torch.argmin(d, 1)
- z_q = self.embedding(min_indicies)
- return z_q, min_indicies
- class Quantizer(torch.nn.Module):
- def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
- super(Quantizer, self).__init__()
- assert embed_dim % n_code_groups == 0
- self.quantizer_modules = nn.ModuleList(
- [
- Quantizer_module(n_codes, embed_dim // n_code_groups)
- for _ in range(n_code_groups)
- ]
- )
- self.n_code_groups = n_code_groups
- self.embed_dim = embed_dim
- def forward(self, xin):
- # B, C, T
- B, C, T = xin.shape
- xin = xin.transpose(1, 2)
- x = xin.reshape(-1, self.embed_dim)
- x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
- min_indicies = []
- z_q = []
- for _x, m in zip(x, self.quantizer_modules):
- _z_q, _min_indicies = m(_x)
- z_q.append(_z_q)
- min_indicies.append(_min_indicies) # B * T,
- z_q = torch.cat(z_q, -1).reshape(xin.shape)
- loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
- (z_q - xin.detach()) ** 2
- )
- z_q = xin + (z_q - xin).detach()
- z_q = z_q.transpose(1, 2)
- codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
- return z_q, loss, codes.transpose(1, 2)
- def embed(self, x):
- # idx: N, 4, T
- x = x.transpose(1, 2)
- x = torch.split(x, 1, 2)
- ret = []
- for q, embed in zip(x, self.quantizer_modules):
- q = embed.embedding(q.squeeze(-1))
- ret.append(q)
- ret = torch.cat(ret, -1)
- return ret.transpose(1, 2) # N, C, T
- class CodePredictor(nn.Module):
- def __init__(
- self,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- n_q=8,
- dims=1024,
- ssl_dim=768,
- ):
- super().__init__()
- self.hidden_channels = hidden_channels
- self.filter_channels = filter_channels
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
- self.ref_enc = modules.MelStyleEncoder(
- ssl_dim, style_vector_dim=hidden_channels
- )
- self.encoder = attentions.Encoder(
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
- )
- self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
- self.n_q = n_q
- self.dims = dims
- def forward(self, x, x_mask, refer, codes, infer=False):
- x = x.detach()
- x = self.vq_proj(x * x_mask) * x_mask
- g = self.ref_enc(refer, x_mask)
- x = x + g
- x = self.encoder(x * x_mask, x_mask)
- x = self.out_proj(x * x_mask) * x_mask
- logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
- 2, 3
- )
- target = codes[1:].transpose(0, 1)
- if not infer:
- logits = logits.reshape(-1, self.dims)
- target = target.reshape(-1)
- loss = torch.nn.functional.cross_entropy(logits, target)
- return loss
- else:
- _, top10_preds = torch.topk(logits, 10, dim=-1)
- correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
- top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
- print("Top-10 Accuracy:", top3_acc, "%")
- pred_codes = torch.argmax(logits, dim=-1)
- acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
- print("Top-1 Accuracy:", acc, "%")
- return pred_codes.transpose(0, 1)
- class SynthesizerTrn(nn.Module):
- """
- Synthesizer for Training
- """
- def __init__(
- self,
- spec_channels,
- segment_size,
- inter_channels,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- resblock,
- resblock_kernel_sizes,
- resblock_dilation_sizes,
- upsample_rates,
- upsample_initial_channel,
- upsample_kernel_sizes,
- n_speakers=0,
- gin_channels=0,
- use_sdp=True,
- semantic_frame_rate=None,
- freeze_quantizer=None,
- **kwargs
- ):
- super().__init__()
- self.spec_channels = spec_channels
- self.inter_channels = inter_channels
- self.hidden_channels = hidden_channels
- self.filter_channels = filter_channels
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.kernel_size = kernel_size
- self.p_dropout = p_dropout
- self.resblock = resblock
- self.resblock_kernel_sizes = resblock_kernel_sizes
- self.resblock_dilation_sizes = resblock_dilation_sizes
- self.upsample_rates = upsample_rates
- self.upsample_initial_channel = upsample_initial_channel
- self.upsample_kernel_sizes = upsample_kernel_sizes
- self.segment_size = segment_size
- self.n_speakers = n_speakers
- self.gin_channels = gin_channels
- self.use_sdp = use_sdp
- self.enc_p = TextEncoder(
- inter_channels,
- hidden_channels,
- filter_channels,
- n_heads,
- n_layers,
- kernel_size,
- p_dropout,
- )
- self.dec = Generator(
- inter_channels,
- resblock,
- resblock_kernel_sizes,
- resblock_dilation_sizes,
- upsample_rates,
- upsample_initial_channel,
- upsample_kernel_sizes,
- gin_channels=gin_channels,
- )
- self.enc_q = PosteriorEncoder(
- spec_channels,
- inter_channels,
- hidden_channels,
- 5,
- 1,
- 16,
- gin_channels=gin_channels,
- )
- self.flow = ResidualCouplingBlock(
- inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
- )
- self.ref_enc = modules.MelStyleEncoder(
- spec_channels, style_vector_dim=gin_channels
- )
- ssl_dim = 768
- self.ssl_dim = ssl_dim
- assert semantic_frame_rate in ["25hz", "50hz"]
- self.semantic_frame_rate = semantic_frame_rate
- if semantic_frame_rate == "25hz":
- self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
- else:
- self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
- self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
- if freeze_quantizer:
- self.ssl_proj.requires_grad_(False)
- self.quantizer.requires_grad_(False)
- # self.enc_p.text_embedding.requires_grad_(False)
- # self.enc_p.encoder_text.requires_grad_(False)
- # self.enc_p.mrte.requires_grad_(False)
- def forward(self, codes, text, refer):
- refer_mask = torch.ones_like(refer[:1,:1,:])
- ge = self.ref_enc(refer * refer_mask, refer_mask)
- quantized = self.quantizer.decode(codes)
- if self.semantic_frame_rate == "25hz":
- dquantized = torch.cat([quantized, quantized]).permute(1, 2, 0)
- quantized = dquantized.contiguous().view(1, self.ssl_dim, -1)
- x, m_p, logs_p, y_mask = self.enc_p(
- quantized, text, ge
- )
-
- z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p)
- z = self.flow(z_p, y_mask, g=ge, reverse=True)
- o = self.dec((z * y_mask)[:, :, :], g=ge)
- return o
- def extract_latent(self, x):
- ssl = self.ssl_proj(x)
- quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
- return codes.transpose(0, 1)
|