123456789101112131415161718192021222324252627282930 |
- from evaluator import *
- DESCRIPTION = "This test case checks if the model can predict what the gradient of a variable is in PyTorch."
- TAGS = ['explain', 'python']
- question = """
- What will this function print
- ```
- def diff_round(x, decimals=1):
- scale_factor = (10 ** decimals)
- x = x * scale_factor
- diff = (1 + 1e-2) * x - torch.floor(x)
- x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0))
- x = x / scale_factor
- return x
- g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True)
- loss = torch.sum(diff_round(g, 1))
- loss.backward()
- print(g.grad.sum())
- ```
- """
- TestSimTorchGrad = question >> LLMRun() >> SubstringEvaluator("-0.03")
- if __name__ == "__main__":
- print(run_test(TestSimTorchGrad))
|