from evaluator import * DESCRIPTION = "This test case checks if the model can predict what the gradient of a variable is in PyTorch." TAGS = ['explain', 'python'] question = """ What will this function print ``` def diff_round(x, decimals=1): scale_factor = (10 ** decimals) x = x * scale_factor diff = (1 + 1e-2) * x - torch.floor(x) x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0)) x = x / scale_factor return x g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True) loss = torch.sum(diff_round(g, 1)) loss.backward() print(g.grad.sum()) ``` """ TestSimTorchGrad = question >> LLMRun() >> SubstringEvaluator("-0.03") if __name__ == "__main__": print(run_test(TestSimTorchGrad))