123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import numpy as np
- from torch import einsum
- from einops import rearrange
- class VectorQuantizer(nn.Module):
- """
- see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
- ____________________________________________
- Discretization bottleneck part of the VQ-VAE.
- Inputs:
- - n_e : number of embeddings
- - e_dim : dimension of embedding
- - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
- _____________________________________________
- """
- # NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for
- # a fix and use legacy=False to apply that fix. VectorQuantizer2 can be
- # used wherever VectorQuantizer has been used before and is additionally
- # more efficient.
- def __init__(self, n_e, e_dim, beta):
- super(VectorQuantizer, self).__init__()
- self.n_e = n_e
- self.e_dim = e_dim
- self.beta = beta
- self.embedding = nn.Embedding(self.n_e, self.e_dim)
- self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
- def forward(self, z):
- """
- Inputs the output of the encoder network z and maps it to a discrete
- one-hot vector that is the index of the closest embedding vector e_j
- z (continuous) -> z_q (discrete)
- z.shape = (batch, channel, height, width)
- quantization pipeline:
- 1. get encoder input (B,C,H,W)
- 2. flatten input to (B*H*W,C)
- """
- # reshape z -> (batch, height, width, channel) and flatten
- z = z.permute(0, 2, 3, 1).contiguous()
- z_flattened = z.view(-1, self.e_dim)
- # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
- d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
- torch.sum(self.embedding.weight**2, dim=1) - 2 * \
- torch.matmul(z_flattened, self.embedding.weight.t())
- ## could possible replace this here
- # #\start...
- # find closest encodings
- min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
- min_encodings = torch.zeros(
- min_encoding_indices.shape[0], self.n_e).to(z)
- min_encodings.scatter_(1, min_encoding_indices, 1)
- # dtype min encodings: torch.float32
- # min_encodings shape: torch.Size([2048, 512])
- # min_encoding_indices.shape: torch.Size([2048, 1])
- # get quantized latent vectors
- z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
- #.........\end
- # with:
- # .........\start
- #min_encoding_indices = torch.argmin(d, dim=1)
- #z_q = self.embedding(min_encoding_indices)
- # ......\end......... (TODO)
- # compute loss for embedding
- loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
- torch.mean((z_q - z.detach()) ** 2)
- # preserve gradients
- z_q = z + (z_q - z).detach()
- # perplexity
- e_mean = torch.mean(min_encodings, dim=0)
- perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
- # reshape back to match original input shape
- z_q = z_q.permute(0, 3, 1, 2).contiguous()
- return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
- def get_codebook_entry(self, indices, shape):
- # shape specifying (batch, height, width, channel)
- # TODO: check for more easy handling with nn.Embedding
- min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
- min_encodings.scatter_(1, indices[:,None], 1)
- # get quantized latent vectors
- z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
- if shape is not None:
- z_q = z_q.view(shape)
- # reshape back to match original input shape
- z_q = z_q.permute(0, 3, 1, 2).contiguous()
- return z_q
- class GumbelQuantize(nn.Module):
- """
- credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
- Gumbel Softmax trick quantizer
- Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
- https://arxiv.org/abs/1611.01144
- """
- def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True,
- kl_weight=5e-4, temp_init=1.0, use_vqinterface=True,
- remap=None, unknown_index="random"):
- super().__init__()
- self.embedding_dim = embedding_dim
- self.n_embed = n_embed
- self.straight_through = straight_through
- self.temperature = temp_init
- self.kl_weight = kl_weight
- self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
- self.embed = nn.Embedding(n_embed, embedding_dim)
- self.use_vqinterface = use_vqinterface
- self.remap = remap
- if self.remap is not None:
- self.register_buffer("used", torch.tensor(np.load(self.remap)))
- self.re_embed = self.used.shape[0]
- self.unknown_index = unknown_index # "random" or "extra" or integer
- if self.unknown_index == "extra":
- self.unknown_index = self.re_embed
- self.re_embed = self.re_embed+1
- print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
- f"Using {self.unknown_index} for unknown indices.")
- else:
- self.re_embed = n_embed
- def remap_to_used(self, inds):
- ishape = inds.shape
- assert len(ishape)>1
- inds = inds.reshape(ishape[0],-1)
- used = self.used.to(inds)
- match = (inds[:,:,None]==used[None,None,...]).long()
- new = match.argmax(-1)
- unknown = match.sum(2)<1
- if self.unknown_index == "random":
- new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
- else:
- new[unknown] = self.unknown_index
- return new.reshape(ishape)
- def unmap_to_all(self, inds):
- ishape = inds.shape
- assert len(ishape)>1
- inds = inds.reshape(ishape[0],-1)
- used = self.used.to(inds)
- if self.re_embed > self.used.shape[0]: # extra token
- inds[inds>=self.used.shape[0]] = 0 # simply set to zero
- back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
- return back.reshape(ishape)
- def forward(self, z, temp=None, return_logits=False):
- # force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work
- hard = self.straight_through if self.training else True
- temp = self.temperature if temp is None else temp
- logits = self.proj(z)
- if self.remap is not None:
- # continue only with used logits
- full_zeros = torch.zeros_like(logits)
- logits = logits[:,self.used,...]
- soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
- if self.remap is not None:
- # go back to all entries but unused set to zero
- full_zeros[:,self.used,...] = soft_one_hot
- soft_one_hot = full_zeros
- z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
- # + kl divergence to the prior loss
- qy = F.softmax(logits, dim=1)
- diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
- ind = soft_one_hot.argmax(dim=1)
- if self.remap is not None:
- ind = self.remap_to_used(ind)
- if self.use_vqinterface:
- if return_logits:
- return z_q, diff, (None, None, ind), logits
- return z_q, diff, (None, None, ind)
- return z_q, diff, ind
- def get_codebook_entry(self, indices, shape):
- b, h, w, c = shape
- assert b*h*w == indices.shape[0]
- indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w)
- if self.remap is not None:
- indices = self.unmap_to_all(indices)
- one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
- z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight)
- return z_q
- class VectorQuantizer2(nn.Module):
- """
- Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
- avoids costly matrix multiplications and allows for post-hoc remapping of indices.
- """
- # NOTE: due to a bug the beta term was applied to the wrong term. for
- # backwards compatibility we use the buggy version by default, but you can
- # specify legacy=False to fix it.
- def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
- sane_index_shape=False, legacy=True):
- super().__init__()
- self.n_e = n_e
- self.e_dim = e_dim
- self.beta = beta
- self.legacy = legacy
- self.embedding = nn.Embedding(self.n_e, self.e_dim)
- self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
- self.remap = remap
- if self.remap is not None:
- self.register_buffer("used", torch.tensor(np.load(self.remap)))
- self.re_embed = self.used.shape[0]
- self.unknown_index = unknown_index # "random" or "extra" or integer
- if self.unknown_index == "extra":
- self.unknown_index = self.re_embed
- self.re_embed = self.re_embed+1
- print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
- f"Using {self.unknown_index} for unknown indices.")
- else:
- self.re_embed = n_e
- self.sane_index_shape = sane_index_shape
- def remap_to_used(self, inds):
- ishape = inds.shape
- assert len(ishape)>1
- inds = inds.reshape(ishape[0],-1)
- used = self.used.to(inds)
- match = (inds[:,:,None]==used[None,None,...]).long()
- new = match.argmax(-1)
- unknown = match.sum(2)<1
- if self.unknown_index == "random":
- new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
- else:
- new[unknown] = self.unknown_index
- return new.reshape(ishape)
- def unmap_to_all(self, inds):
- ishape = inds.shape
- assert len(ishape)>1
- inds = inds.reshape(ishape[0],-1)
- used = self.used.to(inds)
- if self.re_embed > self.used.shape[0]: # extra token
- inds[inds>=self.used.shape[0]] = 0 # simply set to zero
- back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
- return back.reshape(ishape)
- def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
- assert temp is None or temp==1.0, "Only for interface compatible with Gumbel"
- assert rescale_logits==False, "Only for interface compatible with Gumbel"
- assert return_logits==False, "Only for interface compatible with Gumbel"
- # reshape z -> (batch, height, width, channel) and flatten
- z = rearrange(z, 'b c h w -> b h w c').contiguous()
- z_flattened = z.view(-1, self.e_dim)
- # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
- d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
- torch.sum(self.embedding.weight**2, dim=1) - 2 * \
- torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
- min_encoding_indices = torch.argmin(d, dim=1)
- z_q = self.embedding(min_encoding_indices).view(z.shape)
- perplexity = None
- min_encodings = None
- # compute loss for embedding
- if not self.legacy:
- loss = self.beta * torch.mean((z_q.detach()-z)**2) + \
- torch.mean((z_q - z.detach()) ** 2)
- else:
- loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
- torch.mean((z_q - z.detach()) ** 2)
- # preserve gradients
- z_q = z + (z_q - z).detach()
- # reshape back to match original input shape
- z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
- if self.remap is not None:
- min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis
- min_encoding_indices = self.remap_to_used(min_encoding_indices)
- min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten
- if self.sane_index_shape:
- min_encoding_indices = min_encoding_indices.reshape(
- z_q.shape[0], z_q.shape[2], z_q.shape[3])
- return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
- def get_codebook_entry(self, indices, shape):
- # shape specifying (batch, height, width, channel)
- if self.remap is not None:
- indices = indices.reshape(shape[0],-1) # add batch axis
- indices = self.unmap_to_all(indices)
- indices = indices.reshape(-1) # flatten again
- # get quantized latent vectors
- z_q = self.embedding(indices)
- if shape is not None:
- z_q = z_q.view(shape)
- # reshape back to match original input shape
- z_q = z_q.permute(0, 3, 1, 2).contiguous()
- return z_q
- class EmbeddingEMA(nn.Module):
- def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
- super().__init__()
- self.decay = decay
- self.eps = eps
- weight = torch.randn(num_tokens, codebook_dim)
- self.weight = nn.Parameter(weight, requires_grad = False)
- self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False)
- self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False)
- self.update = True
- def forward(self, embed_id):
- return F.embedding(embed_id, self.weight)
- def cluster_size_ema_update(self, new_cluster_size):
- self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
- def embed_avg_ema_update(self, new_embed_avg):
- self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
- def weight_update(self, num_tokens):
- n = self.cluster_size.sum()
- smoothed_cluster_size = (
- (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
- )
- #normalize embedding average with smoothed cluster size
- embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
- self.weight.data.copy_(embed_normalized)
- class EMAVectorQuantizer(nn.Module):
- def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
- remap=None, unknown_index="random"):
- super().__init__()
- self.codebook_dim = codebook_dim
- self.num_tokens = num_tokens
- self.beta = beta
- self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
- self.remap = remap
- if self.remap is not None:
- self.register_buffer("used", torch.tensor(np.load(self.remap)))
- self.re_embed = self.used.shape[0]
- self.unknown_index = unknown_index # "random" or "extra" or integer
- if self.unknown_index == "extra":
- self.unknown_index = self.re_embed
- self.re_embed = self.re_embed+1
- print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
- f"Using {self.unknown_index} for unknown indices.")
- else:
- self.re_embed = n_embed
- def remap_to_used(self, inds):
- ishape = inds.shape
- assert len(ishape)>1
- inds = inds.reshape(ishape[0],-1)
- used = self.used.to(inds)
- match = (inds[:,:,None]==used[None,None,...]).long()
- new = match.argmax(-1)
- unknown = match.sum(2)<1
- if self.unknown_index == "random":
- new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
- else:
- new[unknown] = self.unknown_index
- return new.reshape(ishape)
- def unmap_to_all(self, inds):
- ishape = inds.shape
- assert len(ishape)>1
- inds = inds.reshape(ishape[0],-1)
- used = self.used.to(inds)
- if self.re_embed > self.used.shape[0]: # extra token
- inds[inds>=self.used.shape[0]] = 0 # simply set to zero
- back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
- return back.reshape(ishape)
- def forward(self, z):
- # reshape z -> (batch, height, width, channel) and flatten
- #z, 'b c h w -> b h w c'
- z = rearrange(z, 'b c h w -> b h w c')
- z_flattened = z.reshape(-1, self.codebook_dim)
-
- # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
- d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
- self.embedding.weight.pow(2).sum(dim=1) - 2 * \
- torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
- encoding_indices = torch.argmin(d, dim=1)
- z_q = self.embedding(encoding_indices).view(z.shape)
- encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
- avg_probs = torch.mean(encodings, dim=0)
- perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
- if self.training and self.embedding.update:
- #EMA cluster size
- encodings_sum = encodings.sum(0)
- self.embedding.cluster_size_ema_update(encodings_sum)
- #EMA embedding average
- embed_sum = encodings.transpose(0,1) @ z_flattened
- self.embedding.embed_avg_ema_update(embed_sum)
- #normalize embed_avg and update weight
- self.embedding.weight_update(self.num_tokens)
- # compute loss for embedding
- loss = self.beta * F.mse_loss(z_q.detach(), z)
- # preserve gradients
- z_q = z + (z_q - z).detach()
- # reshape back to match original input shape
- #z_q, 'b h w c -> b c h w'
- z_q = rearrange(z_q, 'b h w c -> b c h w')
- return z_q, loss, (perplexity, encodings, encoding_indices)
|