123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- import os, math
- import torch
- import torch.nn.functional as F
- import pytorch_lightning as pl
- from main import instantiate_from_config
- from taming.modules.util import SOSProvider
- def disabled_train(self, mode=True):
- """Overwrite model.train with this function to make sure train/eval mode
- does not change anymore."""
- return self
- class Net2NetTransformer(pl.LightningModule):
- def __init__(self,
- transformer_config,
- first_stage_config,
- cond_stage_config,
- permuter_config=None,
- ckpt_path=None,
- ignore_keys=[],
- first_stage_key="image",
- cond_stage_key="depth",
- downsample_cond_size=-1,
- pkeep=1.0,
- sos_token=0,
- unconditional=False,
- ):
- super().__init__()
- self.be_unconditional = unconditional
- self.sos_token = sos_token
- self.first_stage_key = first_stage_key
- self.cond_stage_key = cond_stage_key
- self.init_first_stage_from_ckpt(first_stage_config)
- self.init_cond_stage_from_ckpt(cond_stage_config)
- if permuter_config is None:
- permuter_config = {"target": "taming.modules.transformer.permuter.Identity"}
- self.permuter = instantiate_from_config(config=permuter_config)
- self.transformer = instantiate_from_config(config=transformer_config)
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
- self.downsample_cond_size = downsample_cond_size
- self.pkeep = pkeep
- def init_from_ckpt(self, path, ignore_keys=list()):
- sd = torch.load(path, map_location="cpu")["state_dict"]
- for k in sd.keys():
- for ik in ignore_keys:
- if k.startswith(ik):
- self.print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- self.load_state_dict(sd, strict=False)
- print(f"Restored from {path}")
- def init_first_stage_from_ckpt(self, config):
- model = instantiate_from_config(config)
- model = model.eval()
- model.train = disabled_train
- self.first_stage_model = model
- def init_cond_stage_from_ckpt(self, config):
- if config == "__is_first_stage__":
- print("Using first stage also as cond stage.")
- self.cond_stage_model = self.first_stage_model
- elif config == "__is_unconditional__" or self.be_unconditional:
- print(f"Using no cond stage. Assuming the training is intended to be unconditional. "
- f"Prepending {self.sos_token} as a sos token.")
- self.be_unconditional = True
- self.cond_stage_key = self.first_stage_key
- self.cond_stage_model = SOSProvider(self.sos_token)
- else:
- model = instantiate_from_config(config)
- model = model.eval()
- model.train = disabled_train
- self.cond_stage_model = model
- def forward(self, x, c):
- # one step to produce the logits
- _, z_indices = self.encode_to_z(x)
- _, c_indices = self.encode_to_c(c)
- if self.training and self.pkeep < 1.0:
- mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape,
- device=z_indices.device))
- mask = mask.round().to(dtype=torch.int64)
- r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
- a_indices = mask*z_indices+(1-mask)*r_indices
- else:
- a_indices = z_indices
- cz_indices = torch.cat((c_indices, a_indices), dim=1)
- # target includes all sequence elements (no need to handle first one
- # differently because we are conditioning)
- target = z_indices
- # make the prediction
- logits, _ = self.transformer(cz_indices[:, :-1])
- # cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
- logits = logits[:, c_indices.shape[1]-1:]
- return logits, target
- def top_k_logits(self, logits, k):
- v, ix = torch.topk(logits, k)
- out = logits.clone()
- out[out < v[..., [-1]]] = -float('Inf')
- return out
- @torch.no_grad()
- def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None,
- callback=lambda k: None):
- x = torch.cat((c,x),dim=1)
- block_size = self.transformer.get_block_size()
- assert not self.transformer.training
- if self.pkeep <= 0.0:
- # one pass suffices since input is pure noise anyway
- assert len(x.shape)==2
- noise_shape = (x.shape[0], steps-1)
- #noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x)
- noise = c.clone()[:,x.shape[1]-c.shape[1]:-1]
- x = torch.cat((x,noise),dim=1)
- logits, _ = self.transformer(x)
- # take all logits for now and scale by temp
- logits = logits / temperature
- # optionally crop probabilities to only the top k options
- if top_k is not None:
- logits = self.top_k_logits(logits, top_k)
- # apply softmax to convert to probabilities
- probs = F.softmax(logits, dim=-1)
- # sample from the distribution or take the most likely
- if sample:
- shape = probs.shape
- probs = probs.reshape(shape[0]*shape[1],shape[2])
- ix = torch.multinomial(probs, num_samples=1)
- probs = probs.reshape(shape[0],shape[1],shape[2])
- ix = ix.reshape(shape[0],shape[1])
- else:
- _, ix = torch.topk(probs, k=1, dim=-1)
- # cut off conditioning
- x = ix[:, c.shape[1]-1:]
- else:
- for k in range(steps):
- callback(k)
- assert x.size(1) <= block_size # make sure model can see conditioning
- x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
- logits, _ = self.transformer(x_cond)
- # pluck the logits at the final step and scale by temperature
- logits = logits[:, -1, :] / temperature
- # optionally crop probabilities to only the top k options
- if top_k is not None:
- logits = self.top_k_logits(logits, top_k)
- # apply softmax to convert to probabilities
- probs = F.softmax(logits, dim=-1)
- # sample from the distribution or take the most likely
- if sample:
- ix = torch.multinomial(probs, num_samples=1)
- else:
- _, ix = torch.topk(probs, k=1, dim=-1)
- # append to the sequence and continue
- x = torch.cat((x, ix), dim=1)
- # cut off conditioning
- x = x[:, c.shape[1]:]
- return x
- @torch.no_grad()
- def encode_to_z(self, x):
- quant_z, _, info = self.first_stage_model.encode(x)
- indices = info[2].view(quant_z.shape[0], -1)
- indices = self.permuter(indices)
- return quant_z, indices
- @torch.no_grad()
- def encode_to_c(self, c):
- if self.downsample_cond_size > -1:
- c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size))
- quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c)
- if len(indices.shape) > 2:
- indices = indices.view(c.shape[0], -1)
- return quant_c, indices
- @torch.no_grad()
- def decode_to_img(self, index, zshape):
- index = self.permuter(index, reverse=True)
- bhwc = (zshape[0],zshape[2],zshape[3],zshape[1])
- quant_z = self.first_stage_model.quantize.get_codebook_entry(
- index.reshape(-1), shape=bhwc)
- x = self.first_stage_model.decode(quant_z)
- return x
- @torch.no_grad()
- def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs):
- log = dict()
- N = 4
- if lr_interface:
- x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8)
- else:
- x, c = self.get_xc(batch, N)
- x = x.to(device=self.device)
- c = c.to(device=self.device)
- quant_z, z_indices = self.encode_to_z(x)
- quant_c, c_indices = self.encode_to_c(c)
- # create a "half"" sample
- z_start_indices = z_indices[:,:z_indices.shape[1]//2]
- index_sample = self.sample(z_start_indices, c_indices,
- steps=z_indices.shape[1]-z_start_indices.shape[1],
- temperature=temperature if temperature is not None else 1.0,
- sample=True,
- top_k=top_k if top_k is not None else 100,
- callback=callback if callback is not None else lambda k: None)
- x_sample = self.decode_to_img(index_sample, quant_z.shape)
- # sample
- z_start_indices = z_indices[:, :0]
- index_sample = self.sample(z_start_indices, c_indices,
- steps=z_indices.shape[1],
- temperature=temperature if temperature is not None else 1.0,
- sample=True,
- top_k=top_k if top_k is not None else 100,
- callback=callback if callback is not None else lambda k: None)
- x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape)
- # det sample
- z_start_indices = z_indices[:, :0]
- index_sample = self.sample(z_start_indices, c_indices,
- steps=z_indices.shape[1],
- sample=False,
- callback=callback if callback is not None else lambda k: None)
- x_sample_det = self.decode_to_img(index_sample, quant_z.shape)
- # reconstruction
- x_rec = self.decode_to_img(z_indices, quant_z.shape)
- log["inputs"] = x
- log["reconstructions"] = x_rec
- if self.cond_stage_key in ["objects_bbox", "objects_center_points"]:
- figure_size = (x_rec.shape[2], x_rec.shape[3])
- dataset = kwargs["pl_module"].trainer.datamodule.datasets["validation"]
- label_for_category_no = dataset.get_textual_label_for_category_no
- plotter = dataset.conditional_builders[self.cond_stage_key].plot
- log["conditioning"] = torch.zeros_like(log["reconstructions"])
- for i in range(quant_c.shape[0]):
- log["conditioning"][i] = plotter(quant_c[i], label_for_category_no, figure_size)
- log["conditioning_rec"] = log["conditioning"]
- elif self.cond_stage_key != "image":
- cond_rec = self.cond_stage_model.decode(quant_c)
- if self.cond_stage_key == "segmentation":
- # get image from segmentation mask
- num_classes = cond_rec.shape[1]
- c = torch.argmax(c, dim=1, keepdim=True)
- c = F.one_hot(c, num_classes=num_classes)
- c = c.squeeze(1).permute(0, 3, 1, 2).float()
- c = self.cond_stage_model.to_rgb(c)
- cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True)
- cond_rec = F.one_hot(cond_rec, num_classes=num_classes)
- cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float()
- cond_rec = self.cond_stage_model.to_rgb(cond_rec)
- log["conditioning_rec"] = cond_rec
- log["conditioning"] = c
- log["samples_half"] = x_sample
- log["samples_nopix"] = x_sample_nopix
- log["samples_det"] = x_sample_det
- return log
- def get_input(self, key, batch):
- x = batch[key]
- if len(x.shape) == 3:
- x = x[..., None]
- if len(x.shape) == 4:
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
- if x.dtype == torch.double:
- x = x.float()
- return x
- def get_xc(self, batch, N=None):
- x = self.get_input(self.first_stage_key, batch)
- c = self.get_input(self.cond_stage_key, batch)
- if N is not None:
- x = x[:N]
- c = c[:N]
- return x, c
- def shared_step(self, batch, batch_idx):
- x, c = self.get_xc(batch)
- logits, target = self(x, c)
- loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
- return loss
- def training_step(self, batch, batch_idx):
- loss = self.shared_step(batch, batch_idx)
- self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
- return loss
- def validation_step(self, batch, batch_idx):
- loss = self.shared_step(batch, batch_idx)
- self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
- return loss
- def configure_optimizers(self):
- """
- Following minGPT:
- This long function is unfortunately doing something very simple and is being very defensive:
- We are separating out all parameters of the model into two buckets: those that will experience
- weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
- We are then returning the PyTorch optimizer object.
- """
- # separate out all parameters to those that will and won't experience regularizing weight decay
- decay = set()
- no_decay = set()
- whitelist_weight_modules = (torch.nn.Linear, )
- blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
- for mn, m in self.transformer.named_modules():
- for pn, p in m.named_parameters():
- fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
- if pn.endswith('bias'):
- # all biases will not be decayed
- no_decay.add(fpn)
- elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
- # weights of whitelist modules will be weight decayed
- decay.add(fpn)
- elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
- # weights of blacklist modules will NOT be weight decayed
- no_decay.add(fpn)
- # special case the position embedding parameter in the root GPT module as not decayed
- no_decay.add('pos_emb')
- # validate that we considered every parameter
- param_dict = {pn: p for pn, p in self.transformer.named_parameters()}
- inter_params = decay & no_decay
- union_params = decay | no_decay
- assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
- assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
- % (str(param_dict.keys() - union_params), )
- # create the pytorch optimizer object
- optim_groups = [
- {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
- {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
- ]
- optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95))
- return optimizer
|