123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- """Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
- import torch
- import torch.nn as nn
- from torchvision import models
- from collections import namedtuple
- from taming.util import get_ckpt_path
- class LPIPS(nn.Module):
- # Learned perceptual metric
- def __init__(self, use_dropout=True):
- super().__init__()
- self.scaling_layer = ScalingLayer()
- self.chns = [64, 128, 256, 512, 512] # vg16 features
- self.net = vgg16(pretrained=True, requires_grad=False)
- self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
- self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
- self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
- self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
- self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
- self.load_from_pretrained()
- for param in self.parameters():
- param.requires_grad = False
- def load_from_pretrained(self, name="vgg_lpips"):
- ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips")
- self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
- print("loaded pretrained LPIPS loss from {}".format(ckpt))
- @classmethod
- def from_pretrained(cls, name="vgg_lpips"):
- if name != "vgg_lpips":
- raise NotImplementedError
- model = cls()
- ckpt = get_ckpt_path(name)
- model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
- return model
- def forward(self, input, target):
- in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
- outs0, outs1 = self.net(in0_input), self.net(in1_input)
- feats0, feats1, diffs = {}, {}, {}
- lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
- for kk in range(len(self.chns)):
- feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
- diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
- res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
- val = res[0]
- for l in range(1, len(self.chns)):
- val += res[l]
- return val
- class ScalingLayer(nn.Module):
- def __init__(self):
- super(ScalingLayer, self).__init__()
- self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
- self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
- def forward(self, inp):
- return (inp - self.shift) / self.scale
- class NetLinLayer(nn.Module):
- """ A single linear layer which does a 1x1 conv """
- def __init__(self, chn_in, chn_out=1, use_dropout=False):
- super(NetLinLayer, self).__init__()
- layers = [nn.Dropout(), ] if (use_dropout) else []
- layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
- self.model = nn.Sequential(*layers)
- class vgg16(torch.nn.Module):
- def __init__(self, requires_grad=False, pretrained=True):
- super(vgg16, self).__init__()
- vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
- self.slice1 = torch.nn.Sequential()
- self.slice2 = torch.nn.Sequential()
- self.slice3 = torch.nn.Sequential()
- self.slice4 = torch.nn.Sequential()
- self.slice5 = torch.nn.Sequential()
- self.N_slices = 5
- for x in range(4):
- self.slice1.add_module(str(x), vgg_pretrained_features[x])
- for x in range(4, 9):
- self.slice2.add_module(str(x), vgg_pretrained_features[x])
- for x in range(9, 16):
- self.slice3.add_module(str(x), vgg_pretrained_features[x])
- for x in range(16, 23):
- self.slice4.add_module(str(x), vgg_pretrained_features[x])
- for x in range(23, 30):
- self.slice5.add_module(str(x), vgg_pretrained_features[x])
- if not requires_grad:
- for param in self.parameters():
- param.requires_grad = False
- def forward(self, X):
- h = self.slice1(X)
- h_relu1_2 = h
- h = self.slice2(h)
- h_relu2_2 = h
- h = self.slice3(h)
- h_relu3_3 = h
- h = self.slice4(h)
- h_relu4_3 = h
- h = self.slice5(h)
- h_relu5_3 = h
- vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
- out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
- return out
- def normalize_tensor(x,eps=1e-10):
- norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
- return x/(norm_factor+eps)
- def spatial_average(x, keepdim=True):
- return x.mean([2,3],keepdim=keepdim)
|