from itertools import cycle from typing import List, Tuple, Callable, Optional from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont from more_itertools.recipes import grouper from taming.data.image_transforms import convert_pil_to_tensor from torch import LongTensor, Tensor from taming.data.helper_types import BoundingBox, Annotation from taming.data.conditional_builder.objects_center_points import ObjectsCenterPointsConditionalBuilder from taming.data.conditional_builder.utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, additional_parameters_string, \ pad_list, get_plot_font_size, absolute_bbox class ObjectsBoundingBoxConditionalBuilder(ObjectsCenterPointsConditionalBuilder): @property def object_descriptor_length(self) -> int: return 3 def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]: object_triples = [ (self.object_representation(ann), *self.token_pair_from_bbox(ann.bbox)) for ann in annotations ] empty_triple = (self.none, self.none, self.none) object_triples = pad_list(object_triples, empty_triple, self.no_max_objects) return object_triples def inverse_build(self, conditional: LongTensor) -> Tuple[List[Tuple[int, BoundingBox]], Optional[BoundingBox]]: conditional_list = conditional.tolist() crop_coordinates = None if self.encode_crop: crop_coordinates = self.bbox_from_token_pair(conditional_list[-2], conditional_list[-1]) conditional_list = conditional_list[:-2] object_triples = grouper(conditional_list, 3) assert conditional.shape[0] == self.embedding_dim return [ (object_triple[0], self.bbox_from_token_pair(object_triple[1], object_triple[2])) for object_triple in object_triples if object_triple[0] != self.none ], crop_coordinates def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int], line_width: int = 3, font_size: Optional[int] = None) -> Tensor: plot = pil_image.new('RGB', figure_size, WHITE) draw = pil_img_draw.Draw(plot) font = ImageFont.truetype( "/usr/share/fonts/truetype/lato/Lato-Regular.ttf", size=get_plot_font_size(font_size, figure_size) ) width, height = plot.size description, crop_coordinates = self.inverse_build(conditional) for (representation, bbox), color in zip(description, cycle(COLOR_PALETTE)): annotation = self.representation_to_annotation(representation) class_label = label_for_category_no(annotation.category_no) + ' ' + additional_parameters_string(annotation) bbox = absolute_bbox(bbox, width, height) draw.rectangle(bbox, outline=color, width=line_width) draw.text((bbox[0] + line_width, bbox[1] + line_width), class_label, anchor='la', fill=BLACK, font=font) if crop_coordinates is not None: draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width) return convert_pil_to_tensor(plot) / 127.5 - 1.