123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- # Copyright (c) 2023, Tri Dao.
- import sys
- import warnings
- import os
- import re
- import ast
- from pathlib import Path
- from packaging.version import parse, Version
- import platform
- from setuptools import setup, find_packages
- import subprocess
- import urllib.request
- import urllib.error
- from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
- import torch
- from torch.utils.cpp_extension import (
- BuildExtension,
- CppExtension,
- CUDAExtension,
- CUDA_HOME,
- )
- with open("README.md", "r", encoding="utf-8") as fh:
- long_description = fh.read()
- # ninja build does not work unless include_dirs are abs path
- this_dir = os.path.dirname(os.path.abspath(__file__))
- PACKAGE_NAME = "flash_attn"
- BASE_WHEEL_URL = (
- "https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
- )
- # FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
- # SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
- FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
- SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
- # For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
- FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE"
- def get_platform():
- """
- Returns the platform name as used in wheel filenames.
- """
- if sys.platform.startswith("linux"):
- return f'linux_{platform.uname().machine}'
- elif sys.platform == "darwin":
- mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
- return f"macosx_{mac_version}_x86_64"
- elif sys.platform == "win32":
- return "win_amd64"
- else:
- raise ValueError("Unsupported platform: {}".format(sys.platform))
- def get_cuda_bare_metal_version(cuda_dir):
- raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
- output = raw_output.split()
- release_idx = output.index("release") + 1
- bare_metal_version = parse(output[release_idx].split(",")[0])
- return raw_output, bare_metal_version
- def check_if_cuda_home_none(global_option: str) -> None:
- if CUDA_HOME is not None:
- return
- # warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
- # in that case.
- warnings.warn(
- f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
- "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
- "only images whose names contain 'devel' will provide nvcc."
- )
- def append_nvcc_threads(nvcc_extra_args):
- nvcc_threads = os.getenv("NVCC_THREADS") or "4"
- return nvcc_extra_args + ["--threads", nvcc_threads]
- cmdclass = {}
- ext_modules = []
- # We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp
- # files included in the source distribution, in case the user compiles from source.
- subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])
- if not SKIP_CUDA_BUILD:
- print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
- TORCH_MAJOR = int(torch.__version__.split(".")[0])
- TORCH_MINOR = int(torch.__version__.split(".")[1])
- # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
- # See https://github.com/pytorch/pytorch/pull/70650
- generator_flag = []
- torch_dir = torch.__path__[0]
- if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
- generator_flag = ["-DOLD_GENERATOR_PATH"]
- check_if_cuda_home_none("flash_attn")
- # Check, if CUDA11 is installed for compute capability 8.0
- cc_flag = []
- if CUDA_HOME is not None:
- _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
- if bare_metal_version < Version("11.6"):
- raise RuntimeError(
- "FlashAttention is only supported on CUDA 11.6 and above. "
- "Note: make sure nvcc has a supported version by running nvcc -V."
- )
- # cc_flag.append("-gencode")
- # cc_flag.append("arch=compute_75,code=sm_75")
- cc_flag.append("-gencode")
- cc_flag.append("arch=compute_80,code=sm_80")
- if CUDA_HOME is not None:
- if bare_metal_version >= Version("11.8"):
- cc_flag.append("-gencode")
- cc_flag.append("arch=compute_90,code=sm_90")
- # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
- # torch._C._GLIBCXX_USE_CXX11_ABI
- # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
- if FORCE_CXX11_ABI:
- torch._C._GLIBCXX_USE_CXX11_ABI = True
- ext_modules.append(
- CUDAExtension(
- name="flash_attn_2_cuda",
- sources=[
- "csrc/flash_attn/flash_api.cpp",
- "csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim224_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim224_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim32_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim32_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim64_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim64_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim96_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim96_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim192_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim224_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim224_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim256_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_hdim256_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim224_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim224_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_causal_sm80.cu",
- "csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_causal_sm80.cu",
- ],
- extra_compile_args={
- "cxx": ["-O3", "-std=c++17"] + generator_flag,
- "nvcc": append_nvcc_threads(
- [
- "-O3",
- "-std=c++17",
- "-U__CUDA_NO_HALF_OPERATORS__",
- "-U__CUDA_NO_HALF_CONVERSIONS__",
- "-U__CUDA_NO_HALF2_OPERATORS__",
- "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
- "--expt-relaxed-constexpr",
- "--expt-extended-lambda",
- "--use_fast_math",
- # "--ptxas-options=-v",
- # "--ptxas-options=-O2",
- # "-lineinfo",
- # "-DFLASHATTENTION_DISABLE_BACKWARD",
- # "-DFLASHATTENTION_DISABLE_DROPOUT",
- # "-DFLASHATTENTION_DISABLE_ALIBI",
- # "-DFLASHATTENTION_DISABLE_SOFTCAP",
- # "-DFLASHATTENTION_DISABLE_UNEVEN_K",
- # "-DFLASHATTENTION_DISABLE_LOCAL",
- ]
- + generator_flag
- + cc_flag
- ),
- },
- include_dirs=[
- Path(this_dir) / "csrc" / "flash_attn",
- Path(this_dir) / "csrc" / "flash_attn" / "src",
- Path(this_dir) / "csrc" / "cutlass" / "include",
- ],
- )
- )
- def get_package_version():
- with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
- version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
- public_version = ast.literal_eval(version_match.group(1))
- local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
- if local_version:
- return f"{public_version}+{local_version}"
- else:
- return str(public_version)
- def get_wheel_url():
- # Determine the version numbers that will be used to determine the correct wheel
- # We're using the CUDA version used to build torch, not the one currently installed
- # _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
- torch_cuda_version = parse(torch.version.cuda)
- torch_version_raw = parse(torch.__version__)
- # For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.3
- # to save CI time. Minor versions should be compatible.
- torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.3")
- python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
- platform_name = get_platform()
- flash_version = get_package_version()
- # cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
- cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
- torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
- cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
- # Determine wheel URL based on CUDA version, torch version, python version and OS
- wheel_filename = f"{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
- wheel_url = BASE_WHEEL_URL.format(tag_name=f"v{flash_version}", wheel_name=wheel_filename)
- return wheel_url, wheel_filename
- class CachedWheelsCommand(_bdist_wheel):
- """
- The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
- find an existing wheel (which is currently the case for all flash attention installs). We use
- the environment parameters to detect whether there is already a pre-built version of a compatible
- wheel available and short-circuits the standard full build pipeline.
- """
- def run(self):
- if FORCE_BUILD:
- return super().run()
- wheel_url, wheel_filename = get_wheel_url()
- print("Guessing wheel URL: ", wheel_url)
- try:
- urllib.request.urlretrieve(wheel_url, wheel_filename)
- # Make the archive
- # Lifted from the root wheel processing command
- # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
- if not os.path.exists(self.dist_dir):
- os.makedirs(self.dist_dir)
- impl_tag, abi_tag, plat_tag = self.get_tag()
- archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
- wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
- print("Raw wheel path", wheel_path)
- os.rename(wheel_filename, wheel_path)
- except (urllib.error.HTTPError, urllib.error.URLError):
- print("Precompiled wheel not found. Building from source...")
- # If the wheel could not be downloaded, build from source
- super().run()
- class NinjaBuildExtension(BuildExtension):
- def __init__(self, *args, **kwargs) -> None:
- # do not override env MAX_JOBS if already exists
- if not os.environ.get("MAX_JOBS"):
- import psutil
- # calculate the maximum allowed NUM_JOBS based on cores
- max_num_jobs_cores = max(1, os.cpu_count() // 2)
- # calculate the maximum allowed NUM_JOBS based on free memory
- free_memory_gb = psutil.virtual_memory().available / (1024 ** 3) # free memory in GB
- max_num_jobs_memory = int(free_memory_gb / 9) # each JOB peak memory cost is ~8-9GB when threads = 4
- # pick lower value of jobs based on cores vs memory metric to minimize oom and swap usage during compilation
- max_jobs = max(1, min(max_num_jobs_cores, max_num_jobs_memory))
- os.environ["MAX_JOBS"] = str(max_jobs)
- super().__init__(*args, **kwargs)
- setup(
- name=PACKAGE_NAME,
- version=get_package_version(),
- packages=find_packages(
- exclude=(
- "build",
- "csrc",
- "include",
- "tests",
- "dist",
- "docs",
- "benchmarks",
- "flash_attn.egg-info",
- )
- ),
- author="Tri Dao",
- author_email="tri@tridao.me",
- description="Flash Attention: Fast and Memory-Efficient Exact Attention",
- long_description=long_description,
- long_description_content_type="text/markdown",
- url="https://github.com/Dao-AILab/flash-attention",
- classifiers=[
- "Programming Language :: Python :: 3",
- "License :: OSI Approved :: BSD License",
- "Operating System :: Unix",
- ],
- ext_modules=ext_modules,
- cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": NinjaBuildExtension}
- if ext_modules
- else {
- "bdist_wheel": CachedWheelsCommand,
- },
- python_requires=">=3.8",
- install_requires=[
- "torch",
- "einops",
- ],
- setup_requires=[
- "packaging",
- "psutil",
- "ninja",
- ],
- )
|