123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764 |
- # Copyright (c) 2022, Tri Dao.
- # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
- # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
- # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
- # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
- import logging
- import re
- from collections import OrderedDict
- from collections.abc import Sequence
- from functools import partial
- from typing import Any, Mapping
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange
- from transformers import BertConfig, PretrainedConfig
- from transformers.models.bert.modeling_bert import (
- BaseModelOutputWithPoolingAndCrossAttentions,
- BertForPreTrainingOutput,
- )
- from flash_attn.bert_padding import (
- index_first_axis,
- index_first_axis_residual,
- pad_input,
- unpad_input,
- )
- from flash_attn.modules.block import Block
- from flash_attn.modules.embedding import BertEmbeddings
- from flash_attn.modules.mha import MHA
- from flash_attn.modules.mlp import FusedMLP, Mlp
- from flash_attn.utils.pretrained import state_dict_from_pretrained
- try:
- from flash_attn.ops.fused_dense import FusedDense
- except ImportError:
- FusedDense = None
- try:
- from flash_attn.ops.triton.layer_norm import layer_norm_fn
- except ImportError:
- layer_norm_fn = None
- try:
- from flash_attn.losses.cross_entropy import CrossEntropyLoss
- except ImportError:
- CrossEntropyLoss = None
- logger = logging.getLogger(__name__)
- def create_mixer_cls(config, cross_attn=False, return_residual=False):
- use_flash_attn = getattr(config, "use_flash_attn", False)
- fused_bias_fc = getattr(config, "fused_bias_fc", False)
- rotary_kwargs = {}
- if config.position_embedding_type == "rotary":
- rotary_kwargs["rotary_emb_dim"] = getattr(config, "rotary_emb_dim", config.hidden_size)
- rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
- rotary_kwargs["rotary_emb_scale_base"] = getattr(config, "rotary_emb_scale_base", None)
- rotary_kwargs["rotary_emb_interleaved"] = getattr(config, "rotary_emb_interleaved", False)
- mixer_cls = partial(
- MHA,
- num_heads=config.num_attention_heads,
- cross_attn=cross_attn,
- dropout=config.attention_probs_dropout_prob,
- causal=False,
- fused_bias_fc=fused_bias_fc,
- use_flash_attn=use_flash_attn,
- return_residual=return_residual,
- **rotary_kwargs,
- )
- return mixer_cls
- def create_mlp_cls(config, layer_idx=None, return_residual=False):
- inner_dim = config.intermediate_size
- fused_mlp = getattr(config, "fused_mlp", False)
- if fused_mlp:
- assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
- "fused_mlp only " "supports approximate gelu"
- )
- if not fused_mlp:
- approximate = (
- "tanh"
- if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
- else "none"
- )
- mlp_cls = partial(
- Mlp,
- hidden_features=inner_dim,
- activation=partial(F.gelu, approximate=approximate),
- return_residual=return_residual,
- )
- else:
- if FusedMLP is None:
- raise ImportError("fused_dense is not installed")
- mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
- # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
- if isinstance(mlp_checkpoint_lvl, Sequence):
- assert layer_idx is not None
- mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
- mlp_cls = partial(
- FusedMLP,
- hidden_features=inner_dim,
- checkpoint_lvl=mlp_checkpoint_lvl,
- return_residual=return_residual,
- )
- return mlp_cls
- def create_block(config, layer_idx=None):
- last_layer_subset = getattr(config, "last_layer_subset", False)
- cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
- # TD [2022-12-19]: For cross attention (last layer), we actually want to return the
- # residual x_kv, not residual x. But it's annoying to change the API (and it only affects
- # one layer) so we just choose not to return residual in this case.
- return_residual = not cross_attn
- mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
- mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
- norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
- block = Block(
- config.hidden_size,
- mixer_cls,
- mlp_cls,
- norm_cls=norm_cls,
- prenorm=False,
- resid_dropout1=config.hidden_dropout_prob,
- resid_dropout2=config.hidden_dropout_prob,
- fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
- return_residual=return_residual,
- )
- return block
- # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
- def _init_weights(module, initializer_range=0.02):
- if isinstance(module, nn.Linear):
- nn.init.normal_(module.weight, std=initializer_range)
- if module.bias is not None:
- nn.init.zeros_(module.bias)
- elif isinstance(module, nn.Embedding):
- nn.init.normal_(module.weight, std=initializer_range)
- if module.padding_idx is not None:
- nn.init.zeros_(module.weight[module.padding_idx])
- class BertEncoder(nn.Module):
- def __init__(self, config: BertConfig):
- super().__init__()
- self.use_flash_attn = getattr(config, "use_flash_attn", False)
- self.layers = nn.ModuleList(
- [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
- )
- def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
- """If subset_mask is not None, we only want output for the subset of the sequence.
- This means that we only compute the last layer output for these tokens.
- subset_mask: (batch, seqlen), dtype=torch.bool
- """
- if key_padding_mask is None or not self.use_flash_attn:
- mixer_kwargs = (
- {"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None
- )
- for layer in self.layers:
- hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
- if subset_mask is not None:
- hidden_states = hidden_states[subset_mask]
- else:
- batch, seqlen = hidden_states.shape[:2]
- hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
- hidden_states, key_padding_mask
- )
- mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
- if subset_mask is None:
- for layer in self.layers:
- hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
- hidden_states = pad_input(hidden_states, indices, batch, seqlen)
- else:
- for layer in self.layers[:-1]:
- hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
- if key_padding_mask is not None:
- subset_idx = torch.nonzero(
- subset_mask[key_padding_mask], as_tuple=False
- ).flatten()
- subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
- subset_cu_seqlens = F.pad(
- torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
- )
- else:
- subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
- subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
- subset_cu_seqlens = F.pad(
- torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
- )
- hidden_states_subset, hidden_states = index_first_axis_residual(
- hidden_states, subset_idx
- )
- # It's ok to set max_seqlen_q to be much larger
- mixer_kwargs = {
- "x_kv": hidden_states,
- "cu_seqlens": subset_cu_seqlens,
- "max_seqlen": max_seqlen_in_batch,
- "cu_seqlens_k": cu_seqlens,
- "max_seqlen_k": max_seqlen_in_batch,
- }
- hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
- return hidden_states
- class BertPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- fused_bias_fc = getattr(config, "fused_bias_fc", False)
- if fused_bias_fc and FusedDense is None:
- raise ImportError("fused_dense is not installed")
- linear_cls = nn.Linear if not fused_bias_fc else FusedDense
- self.dense = linear_cls(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states, pool=True):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0] if pool else hidden_states
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- class BertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- fused_bias_fc = getattr(config, "fused_bias_fc", False)
- if fused_bias_fc and FusedDense is None:
- raise ImportError("fused_dense is not installed")
- self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
- if self.fused_dropout_add_ln and layer_norm_fn is None:
- raise ImportError("Triton is not installed")
- linear_cls = nn.Linear if not fused_bias_fc else FusedDense
- self.dense = linear_cls(config.hidden_size, config.hidden_size)
- approximate = (
- "tanh"
- if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
- else "none"
- )
- self.transform_act_fn = nn.GELU(approximate=approximate)
- self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- if not self.fused_dropout_add_ln:
- hidden_states = self.layer_norm(hidden_states)
- else:
- hidden_states = layer_norm_fn(
- hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps
- )
- return hidden_states
- class BertLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- fused_bias_fc = getattr(config, "fused_bias_fc", False)
- if fused_bias_fc and FusedDense is None:
- raise ImportError("fused_dense is not installed")
- linear_cls = nn.Linear if not fused_bias_fc else FusedDense
- self.transform = BertPredictionHeadTransform(config)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states)
- return hidden_states
- class BertPreTrainingHeads(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = BertLMPredictionHead(config)
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
- def forward(self, sequence_output, pooled_output):
- prediction_scores = self.predictions(sequence_output)
- seq_relationship_score = self.seq_relationship(pooled_output)
- return prediction_scores, seq_relationship_score
- class BertPreTrainedModel(nn.Module):
- """An abstract class to handle weights initialization and
- a simple interface for dowloading and loading pretrained models.
- """
- def __init__(self, config, *inputs, **kwargs):
- super().__init__()
- if not isinstance(config, BertConfig):
- raise ValueError(
- "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
- "To create a model from a Google pretrained model use "
- "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
- self.__class__.__name__, self.__class__.__name__
- )
- )
- self.config = config
- @classmethod
- def from_pretrained(cls, model_name, config, *inputs, **kwargs):
- """
- Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
- Download and cache the pre-trained model file if needed.
- Params:
- pretrained_model_name_or_path: either:
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `model.chkpt` a TensorFlow checkpoint
- *inputs, **kwargs: additional input for the specific Bert class
- (ex: num_labels for BertForSequenceClassification)
- """
- # Instantiate model.
- model = cls(config, *inputs, **kwargs)
- load_return = model.load_state_dict(
- remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False
- )
- logger.info(load_return)
- return model
- class BertModel(BertPreTrainedModel):
- def __init__(self, config: BertConfig, add_pooling_layer=True):
- super().__init__(config)
- self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- if config.vocab_size % self.pad_vocab_size_multiple != 0:
- config.vocab_size += self.pad_vocab_size_multiple - (
- config.vocab_size % self.pad_vocab_size_multiple
- )
- self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
- if self.fused_dropout_add_ln and layer_norm_fn is None:
- raise ImportError("Triton is not installed")
- assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
- self.embeddings = BertEmbeddings(
- config.hidden_size,
- config.vocab_size,
- config.max_position_embeddings,
- config.type_vocab_size,
- padding_idx=config.pad_token_id,
- )
- self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
- self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.encoder = BertEncoder(config)
- self.pooler = BertPooler(config) if add_pooling_layer else None
- self.apply(partial(_init_weights, initializer_range=config.initializer_range))
- def forward(
- self,
- input_ids,
- position_ids=None,
- token_type_ids=None,
- attention_mask=None,
- masked_tokens_mask=None,
- ):
- """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
- we only want the output for the masked tokens. This means that we only compute the last
- layer output for these tokens.
- masked_tokens_mask: (batch, seqlen), dtype=torch.bool
- """
- hidden_states = self.embeddings(
- input_ids, position_ids=position_ids, token_type_ids=token_type_ids
- )
- # TD [2022-12:18]: Don't need to force residual in fp32
- # BERT puts embedding LayerNorm before embedding dropout.
- if not self.fused_dropout_add_ln:
- hidden_states = self.emb_ln(hidden_states)
- else:
- hidden_states = layer_norm_fn(
- hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
- )
- hidden_states = self.emb_drop(hidden_states)
- if masked_tokens_mask is not None:
- batch_size, seqlen = input_ids.shape[:2]
- # We also need the first column for the CLS token
- first_col_mask = torch.zeros(
- batch_size, seqlen, dtype=torch.bool, device=input_ids.device
- )
- first_col_mask[:, 0] = True
- subset_mask = masked_tokens_mask | first_col_mask
- else:
- subset_mask = None
- sequence_output = self.encoder(
- hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
- )
- if masked_tokens_mask is None:
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- else:
- # TD [2022-03-01]: the indexing here is very tricky.
- if attention_mask is not None:
- subset_idx = subset_mask[attention_mask]
- pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
- sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
- else:
- pool_input = sequence_output[first_col_mask[subset_mask]]
- sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
- pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None
- return BaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- )
- class BertForPreTraining(BertPreTrainedModel):
- def __init__(self, config: BertConfig):
- super().__init__(config)
- # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
- # (around 15%) to the classifier heads.
- self.dense_seq_output = getattr(config, "dense_seq_output", False)
- # If last_layer_subset, we only need the compute the last layer for a subset of tokens
- # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
- self.last_layer_subset = getattr(config, "last_layer_subset", False)
- if self.last_layer_subset:
- assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
- use_xentropy = getattr(config, "use_xentropy", False)
- if use_xentropy and CrossEntropyLoss is None:
- raise ImportError("xentropy_cuda is not installed")
- loss_cls = (
- nn.CrossEntropyLoss
- if not use_xentropy
- else partial(CrossEntropyLoss, inplace_backward=True)
- )
- self.bert = BertModel(config)
- self.cls = BertPreTrainingHeads(config)
- self.mlm_loss = loss_cls(ignore_index=0)
- self.nsp_loss = loss_cls(ignore_index=-1)
- # Initialize weights and apply final processing
- self.apply(partial(_init_weights, initializer_range=config.initializer_range))
- self.tie_weights()
- def tie_weights(self):
- self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
- def forward(
- self,
- input_ids,
- position_ids=None,
- token_type_ids=None,
- attention_mask=None,
- labels=None,
- next_sentence_label=None,
- ):
- """
- If labels are provided, they must be 0 for masked out tokens (as specified in the attention
- mask).
- Outputs:
- if `labels` and `next_sentence_label` are not `None`:
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
- sentence classification loss.
- if `labels` or `next_sentence_label` is `None`:
- Outputs a tuple comprising
- - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- - the next sentence classification logits of shape [batch_size, 2].
- """
- masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
- outputs = self.bert(
- input_ids,
- position_ids=position_ids,
- token_type_ids=token_type_ids,
- attention_mask=attention_mask.bool() if attention_mask is not None else None,
- masked_tokens_mask=masked_tokens_mask,
- )
- sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
- if self.dense_seq_output and labels is not None:
- masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
- if not self.last_layer_subset:
- sequence_output = index_first_axis(
- rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
- )
- prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
- total_loss = None
- if labels is not None and next_sentence_label is not None:
- if (
- self.dense_seq_output and labels is not None
- ): # prediction_scores are already flattened
- masked_lm_loss = self.mlm_loss(
- prediction_scores, labels.flatten()[masked_token_idx]
- )
- else:
- masked_lm_loss = self.mlm_loss(
- rearrange(prediction_scores, "... v -> (...) v"),
- rearrange(labels, "... -> (...)"),
- )
- next_sentence_loss = self.nsp_loss(
- rearrange(seq_relationship_score, "... t -> (...) t"),
- rearrange(next_sentence_label, "... -> (...)"),
- )
- total_loss = masked_lm_loss.float() + next_sentence_loss.float()
- return BertForPreTrainingOutput(
- loss=total_loss,
- prediction_logits=prediction_scores,
- seq_relationship_logits=seq_relationship_score,
- )
- def remap_state_dict(state_dict, config: PretrainedConfig):
- """
- Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
- """
- # LayerNorm
- def key_mapping_ln_gamma_beta(key):
- key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
- key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
- return key
- state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
- # Layers
- def key_mapping_layers(key):
- return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
- key = re.sub(
- r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
- r"bert.encoder.layers.\1.norm1.\2",
- key,
- )
- key = re.sub(
- r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
- r"bert.encoder.layers.\1.norm2.\2",
- key,
- )
- key = re.sub(
- r"^cls.predictions.transform.LayerNorm.(weight|bias)",
- r"cls.predictions.transform.layer_norm.\1",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- def key_mapping_mlp(key):
- key = re.sub(
- r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
- r"bert.encoder.layers.\1.mlp.fc1.\2",
- key,
- )
- key = re.sub(
- r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
- r"bert.encoder.layers.\1.mlp.fc2.\2",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- last_layer_subset = getattr(config, "last_layer_subset", False)
- for d in range(config.num_hidden_layers):
- Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
- Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
- Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
- bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
- bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
- bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
- if not (last_layer_subset and d == config.num_hidden_layers - 1):
- state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
- [Wq, Wk, Wv], dim=0
- )
- state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
- else:
- state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
- state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
- state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
- state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0)
- def key_mapping_attn(key):
- return re.sub(
- r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
- r"bert.encoder.layers.\1.mixer.out_proj.\2",
- key,
- )
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- def key_mapping_decoder_bias(key):
- return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
- state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
- # Word embedding
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- if pad_vocab_size_multiple > 1:
- word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
- state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
- )
- decoder_weight = state_dict["cls.predictions.decoder.weight"]
- state_dict["cls.predictions.decoder.weight"] = F.pad(
- decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
- )
- # If the vocab was padded, we want to set the decoder bias for those padded indices to be
- # strongly negative (i.e. the decoder shouldn't predict those indices).
- # TD [2022-05-09]: I don't think it affects the MLPerf training.
- decoder_bias = state_dict["cls.predictions.decoder.bias"]
- state_dict["cls.predictions.decoder.bias"] = F.pad(
- decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
- )
- return state_dict
- def inv_remap_state_dict(state_dict, config: PretrainedConfig):
- """
- Map the state_dict of a flash_attn model to be Huggingface BERT compatible.
- This function is meant to be the inverse of remap_state_dict.
- """
- # Word embedding
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- if pad_vocab_size_multiple > 1:
- word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
- decoder_weight = state_dict["cls.predictions.decoder.weight"]
- decoder_bias = state_dict["cls.predictions.decoder.bias"]
- # unpad embeddings
- state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
- : config.orig_vocab_size, :
- ]
- state_dict["cls.predictions.decoder.weight"] = decoder_weight[: config.orig_vocab_size, :]
- state_dict["cls.predictions.decoder.bias"] = decoder_bias[: config.orig_vocab_size]
- for d in range(config.num_hidden_layers):
- last_layer_subset = getattr(config, "last_layer_subset", False)
- if not last_layer_subset or d != (config.num_hidden_layers - 1):
- Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
- Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
- state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wqkv_weights[
- : Wqkv_weights.shape[0] // 3, :
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wqkv_weights[
- Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wqkv_weights[
- 2 * Wqkv_weights.shape[0] // 3 :, :
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wqkv_biases[
- : Wqkv_biases.shape[0] // 3
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wqkv_biases[
- Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wqkv_biases[
- 2 * Wqkv_biases.shape[0] // 3 :
- ]
- else:
- Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
- Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
- Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
- Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
- state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wq_weight
- state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wkv_weights[
- : Wkv_weights.shape[0] // 2, :
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wkv_weights[
- Wkv_weights.shape[0] // 2 :, :
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
- state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
- : Wkv_biases.shape[0] // 2
- ]
- state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wkv_biases[
- Wkv_biases.shape[0] // 2 :
- ]
- def inv_key_mapping_ln(key):
- key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
- key = re.sub(
- r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
- r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
- key,
- )
- key = re.sub(
- r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
- r"bert.encoder.layers.\1.output.LayerNorm.\2",
- key,
- )
- key = re.sub(
- r"cls.predictions.transform.layer_norm.(weight|bias)",
- r"cls.predictions.transform.LayerNorm.\1",
- key,
- )
- return key
- def inv_key_mapping_ln_gamma_beta(key):
- key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
- key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
- return key
- def inv_key_mapping_layers(key):
- return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)
- def inv_key_mapping_mlp(key):
- key = re.sub(
- r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
- r"bert.encoder.layer.\1.intermediate.dense.\2",
- key,
- )
- key = re.sub(
- r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
- r"bert.encoder.layer.\1.output.dense.\2",
- key,
- )
- return key
- def inv_key_mapping_attn(key):
- return re.sub(
- r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
- r"bert.encoder.layer.\1.attention.output.dense.\2",
- key,
- )
- def inv_key_mapping_decoder_bias(key):
- return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)
- state_dict = OrderedDict((inv_key_mapping_ln(key), value) for key, value in state_dict.items())
- state_dict = OrderedDict(
- (inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
- )
- state_dict = OrderedDict(
- (inv_key_mapping_layers(key), value) for key, value in state_dict.items()
- )
- state_dict = OrderedDict((inv_key_mapping_mlp(key), value) for key, value in state_dict.items())
- state_dict = OrderedDict(
- (inv_key_mapping_attn(key), value) for key, value in state_dict.items()
- )
- state_dict = OrderedDict(
- (inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
- )
- return state_dict
|